Research on Chemical Intermediates

, Volume 39, Issue 6, pp 2321–2337 | Cite as

Preparation and performance valuation of high selective molecularly imprinted polymers for malachite green

  • Hui Cao
  • Fei Xu
  • Dai-Xi Li
  • Xiao-Gang Zhang
  • Jin-Song Yu


Molecular imprinting is a technology that facilitates the production of artificial receptors toward compounds of interest. In this study, we prepared a series of molecularly imprinted polymers (MIPs) by precipitation polymerization for the purpose of binding specifically to malachite green (MG). The presence of monomer–template solution complexes in non-covalent MIPs systems had been verified by UV-spectrometric detection and molecular dynamics simulations. The synthesized parameters were, respectively, optimized and the optimal conditions for the efficient adsorption property were as follows: template: MG, 1 mmol; functional monomer: methacrylic acid (MAA), 8 mmol; cross-linker: ethylene glycol dimethacryllate, 16 mmol; and porogen: acetonitrile, 30 mL. Fourier transform infrared spectroscopy and nitrogen adsorption experiments were used to characterize the MIPs. Scatchard analysis was used for estimation of the dissociation constants and maximum amounts of binding sites. The polymer based on MAA had two classes of heterogeneous binding sites characterized by two values of K D and B max: K D = 14.10 μmol L−1 and B max = 1.37 μmol g−1 for the higher affinity binding sites, and K D = 384.62 μmol L−1 and B max = 24.77 μmol g−1 for the lower affinity binding sites. The specificity of MIPs on SPE column was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward MG.


Malachite green Molecularly imprinted polymers Preparation Characteristics 



This work was financially supported by the Shanghai University scientific selection and cultivation for outstanding young teachers special fund (No. slg08030).


  1. 1.
    W.J.R. Lanzing, Hydrobiologia 25, 426 (1965)CrossRefGoogle Scholar
  2. 2.
    S. Cleinmensen, J.J. Jensen, N.J. Jensen, O. Meyer, P. Olsen, Arch. Toxicol. 56, 43 (1984)CrossRefGoogle Scholar
  3. 3.
    A.A. Bergwerff, R.V. Kuiper, P. Scherpenisse, Aquaculture 233, 55 (2004)CrossRefGoogle Scholar
  4. 4.
    R.A. Mittelstaedt, N. Mei, P.J. Webb, J.G. Shaddock, V.N. Dobrovolsky, L.J. McGarrity, Mutat. Res. 561, 127 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Sun, L.X. Wang, X.L. Qin, X.S. Ge, Environ. Monit. Assess. 179, 421 (2011)CrossRefGoogle Scholar
  6. 6.
    A.A. Bergeerff, P. Scherpenisse, J. Chromatogr. B 788, 351 (2003)CrossRefGoogle Scholar
  7. 7.
    M. Jesus, M. Bueno, S. Herrera, Anal. Chim. Acta 665, 47 (2010)CrossRefGoogle Scholar
  8. 8.
    M.C. Hennion, J. Chromatogr. A 856, 3 (1999)CrossRefGoogle Scholar
  9. 9.
    Q.Z. Feng, L.X. Zhao, W. Yan, J.M. Lin, Z.X. Zheng, J. Hazard. Mater. 167, 282 (2009)CrossRefGoogle Scholar
  10. 10.
    T.H. Jiang, L.X. Zhao, B.L. Chu, Talanta 78, 442 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Javanbakht, A.M. Attaran, M.N. Namjumanesh, E.M. Mehdi, A.A. Behrouz, J. Chromatogr. B 878, 1700 (2010)CrossRefGoogle Scholar
  12. 12.
    Y.H. Li, T. Yang, X.L. Qi, Y.W. Qiao, A.P. Deng, Anal. Chim. Acta 624, 317 (2008)CrossRefGoogle Scholar
  13. 13.
    J.O. Mahony, K. Nolan, M.R. Smyth, B. Mizaikoff, Anal. Chim. Acta 534, 31 (2005)CrossRefGoogle Scholar
  14. 14.
    T. Jing, X.D. Gao, P. Wang, Y. Wang, Y.F. Lin, X.C. Zong, Y.K. Zhou, S.R. Mei, Chin. Chem. Lett. 18, 1535 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Sambe, K. Hoshina, R. Moaddel, I.W. Wainer, J. Haginaka, J. Chromatogr. A 1134, 88 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Chaitidou, O. Kotrotsiou, K. Kotti, O. Kammona, M. Bukhari, C. Kiparissides, Mater. Sci. Eng. B 152, 55 (2008)CrossRefGoogle Scholar
  17. 17.
    Y. Jin, M. Jiang, Y. Shi, Y. Lin, Y. Peng, K. Dai, B. Lu, Anal. Chim. Acta 612, 105 (2008)CrossRefGoogle Scholar
  18. 18.
    J.F. He, Q.H. Zhu, Q.Y. Deng, Spectrochim. Acta. Part A 67, 1297 (2007)CrossRefGoogle Scholar
  19. 19.
    V.P. Joshi, M.G. Kulkarni, R.A. Mashelkar, Chem. Eng. Sci. 55, 1509 (2000)CrossRefGoogle Scholar
  20. 20.
    X.Z. Shi, A. Wu, G.R. Qu, R.X. Li, D.B. Zhang, Biomaterials 28, 3741 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Shi, D.D. Peng, C.H. Shi, X. Zhang, Y.T. Xie, B. Lu, Food Chem. 126, 1916 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Yoshimi, R. Arai, S. Nakayama, Anal. Chim. Acta 682, 110 (2010)CrossRefGoogle Scholar
  23. 23.
    C. Cacho, E. Turiel, C.P. Conde, Talanta 78, 1029 (2009)CrossRefGoogle Scholar
  24. 24.
    I. Mijangos, N.V. Fernando, A. Guerreiro, E. Piletska, I. Chianella, K. Karim, A. Turner, S. Piletsky, Biosens. Bioelectron. 22, 381 (2006)CrossRefGoogle Scholar
  25. 25.
    M.D. Celiz, D.S. Aga, L.A. Colón, Microchem. J. 92, 174 (2009)CrossRefGoogle Scholar
  26. 26.
    H.J. Su, J. Li, T.W. Tan, Biochem. Eng. J. 39, 503 (2008)CrossRefGoogle Scholar
  27. 27.
    S. Yan, Z.X. Gao, Y.J. Fang, Y.Y. Cheng, H.Y. Zhou, Dyes Pigment 74, 572 (2007)CrossRefGoogle Scholar
  28. 28.
    Y.Q. Lv, Z.X. Lin, W. Feng, X. Zhou, T.W. Tan, Biochem. Eng. J. 36, 221 (2007)CrossRefGoogle Scholar
  29. 29.
    J.R.L. Guerreiro, V. Freitas, M.G.F. Sales, Microchem. J. 97, 173 (2011)CrossRefGoogle Scholar
  30. 30.
    R.J. Umpleby, S.C. Baxter, M. Bode, J.K. Berch, R.N. Shan, K.D. Shimizu, Anal. Chim. Acta 435, 35 (2001)CrossRefGoogle Scholar
  31. 31.
    R.P. Cornet, V. Héroguez, A. Thienpont, O. Babot, T. Toupance, J. Chromatogr. A 1179, 2 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hui Cao
    • 1
  • Fei Xu
    • 1
  • Dai-Xi Li
    • 1
  • Xiao-Gang Zhang
    • 1
  • Jin-Song Yu
    • 1
  1. 1.Medical Equipment and Food InstituteUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations