Advertisement

Research on Chemical Intermediates

, Volume 39, Issue 5, pp 1981–1996 | Cite as

Photocatalytic degradation of chlorophenols under direct solar radiation in the presence of ZnO catalyst

  • Muneer M. Ba-AbbadEmail author
  • Abdul Amir H. Kadhum
  • Abu Bakar Mohamad
  • Mohd S. Takriff
  • Kamaruzzaman Sopian
Article

Abstract

The photocatalytic degradation of chlorophenols was evaluated under direct solar radiation using commercial ZnO catalyst. Effects of several parameters such as a catalyst loading, pH of solution and initial concentration on the degradation process have been investigated. The photocatalytic degradation efficiency of chlorophenols at the optimum value of the parameters was compared under similar experimental conditions. The results of efficiency and mineralization showed the degradation of 2-chlorophenol and 2,4-dichlorophenol compound with the first order kinetic rate and the rate constant decreases as the initial concentration of the chlorophenols increase. However, the rate constant was strongly affected by type of chlorophenols compound present either 2-chlorophenol or 2,4-dichlorophenol. The highest removal of chlorophenols was obtained after 120 min and the final intermediate compounds of chlorophenols degradation are lower molecular weight compound consisting of acetic acid which was analyzed through the HPLC.

Keywords

Chlorophenols Photocatalytic degradation Solar radiation Zinc oxide 

Notes

Acknowledgments

The authors are thankful to Universiti Kebangsaan Malaysia under the UKM-DLP-2011-064 grant and Hadhramout University of Science and Technology, Yemen for their financial support.

References

  1. 1.
    S.W. Lam, K. Chiang, T.M. Lim, R. Amal, G.K.C. Low, Effect of charge trapping species of cupric ions on the photo catalytic oxidation of resorcinol. Appl. Catal. B 55, 123–132 (2005)CrossRefGoogle Scholar
  2. 2.
    K.M. Parida, S. Parija, Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol. Energy 80, 1048–1054 (2006)CrossRefGoogle Scholar
  3. 3.
    N.N. Rao, A.K. Dubey, S. Mohanty, P. Khare, R. Jain, S.N. Kaul, Photocatalytic degradation of 2-chlorophenol: a study of kinetics. Intermediates and biodegradability. J. Hazard. Mater. 101, 301–314 (2003)CrossRefGoogle Scholar
  4. 4.
    USEPA. National emission standards for hazardous air pollutants: miscellaneous organic chemical manufacturing; final rule. Federal Register Part V, 40 CFR Part 63. United States Environmental Protection Agency, 2006Google Scholar
  5. 5.
    US EPA/OSHA. Chemical advisory and notice of potential risk: skin exposure to molten 2,4-dichlorophenol (2,4-DCP) can cause rapid death, US EPA Office of pollution prevention and toxics and occupational safety and health administration, 2000Google Scholar
  6. 6.
    H. Roques, Chemical Water Treatment: Principles and Practice (Wiley, Wienheim, 1996)Google Scholar
  7. 7.
    G. Chen, L. Lei, P.L. Yue, Wet oxidation of high concentration reactive dyes. Ind. Eng. Chem. Res. 38, 1837–1843 (1999)CrossRefGoogle Scholar
  8. 8.
    S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 141, 581–590 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Saquib, M. Muneer, Titanium dioxide mediated photocatalyzed degradation of a textile dye derivative, acid orange 8, in aqueous suspensions. Desalination 155, 255–263 (2003)CrossRefGoogle Scholar
  10. 10.
    K. Pirkanniemi, M. Sillanpaa, Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48, 1047–1460 (2002)CrossRefGoogle Scholar
  11. 11.
    B. Dindar, S. Icli, Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J. Photochem. Photobiol. A 140, 263–268 (2001)CrossRefGoogle Scholar
  12. 12.
    A. Akyol, H.C. Yatmaz, M. Bayramoglu, Photocatalytic decolorization of Remazol red RR in aqueous ZnO suspensions. Appl. Catal. B 54, 19–24 (2004)CrossRefGoogle Scholar
  13. 13.
    St. Christoskva, M. Stoyanova, Degradation of phenolic waste waters over Ni-oxide. Water Res. 35, 2073–2077 (2001)CrossRefGoogle Scholar
  14. 14.
    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  15. 15.
    E. Ziegler, A. Heinrich, H. Oppermann, G. Stover, Electrical properties and non-stoichiometry in ZnO single crystals. Phys. Status Solid 66, 635–648 (1981)CrossRefGoogle Scholar
  16. 16.
    M.A. Behnajady, N. Modirshala, R. Hamazavi, Kinetic study on photocatalytic degradation of C.I. Acid yellow 23 by ZnO photocatalyst. J. Hazard Mater. B 133, 223–226 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Lathasree, R.A. Nageswara, B. Sivasnkar, V. Sadasivam, K. Rengaraj, Heterogeneous photocatalytic mineralization of phenols in aqueous solutions. J. Mol. Catal. A 223, 101–105 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arvindo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 77, 65–82 (2003)CrossRefGoogle Scholar
  19. 19.
    E. Evgenidou, K. Fytianos, I. Poulios, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl. Catal. B 59, 81–89 (2005)CrossRefGoogle Scholar
  20. 20.
    I. Poulios, D. Makri, X. Prohaska, Photocatalytic treatment of olive milling waste water: oxidation of protocatechuic acid. Global Nest: Int. J. 1, 55–62 (1999)Google Scholar
  21. 21.
    B. Pare, P. Singh, S.B. Jonnalagadd, Visible light induced heterogeneous advanced oxidation process to degrade pararosanilin dye in aqueous suspension of ZnO. Indian J. Chem. 47, 830–835 (2008)Google Scholar
  22. 22.
    S.K. Pardeshi, A.N.B. Patil, A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol. Energy 82, 700–705 (2008)CrossRefGoogle Scholar
  23. 23.
    V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, E. Pelizzetti, Photocatalytic degradation of phenol in aqueous TiO2 suspensions. Toxicol. Environ. Chem. 16, 89–95 (1988)CrossRefGoogle Scholar
  24. 24.
    M.A. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10–18 (2009)CrossRefGoogle Scholar
  25. 25.
    U.I. Gaya, A.H. Abdulla, M.Z. Hussein, Z. Zainal, Photocatalytic removal of 2,4,6-trichlorophenyl from water exploiting commercial ZnO powder. Desalination 263, 172–182 (2010)CrossRefGoogle Scholar
  26. 26.
    W. Bian, X. Song, D. Liu, J. Zhang, X. Chen, The intermediate products in the degradation of 4-chlorophenol by pulsed high voltage discharge in water. J. Hazard. Mater. 192, 1330–1339 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Muneer M. Ba-Abbad
    • 1
    Email author
  • Abdul Amir H. Kadhum
    • 1
  • Abu Bakar Mohamad
    • 1
  • Mohd S. Takriff
    • 1
  • Kamaruzzaman Sopian
    • 2
  1. 1.Department of Chemical and Process Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Solar Energy Research Institute (SERI)Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations