Advertisement

Research on Chemical Intermediates

, Volume 39, Issue 3, pp 781–804 | Cite as

Transient free radicals in viscous solvents

  • Igor V. Khudyakov
Article

Abstract

The majority of free radicals are highly reactive species which participate in bimolecular reactions with each other. Validation of the theory of molecular diffusion and reactivity in the liquid state requires knowledge of rate constants of radical–radical reactions (recombination, disproportionation) and their viscosity dependencies. An accurate comparison of theory and experiment has become available due to experimentally measured diffusion coefficients of reactive radicals by transient grating technique. Initial distribution of radicals in solution can be not random but pair-wise as in photo- or thermoinitiation of free radical polymerization reactions. Probability of a radical escape of a partner (cage escape) characterizes the initiator efficiency. Despite decades of measurement of cage effect values, cage effect dynamics with free radicals have only been investigated quite recently. The present tutorial review considers the effect of viscosity of Newtonian liquid on two types of recombination—in the solvent bulk and in a cage. Further, since radicals are paramagnetic species, external magnetic field affects probability of their reactions in pairs. These effects are also observed in viscous liquids, and reasons for such observations are explained. The recently discovered low magnetic field effect is also observed on radical pairs in viscous liquids.

Keywords

Diffusion-controlled reactions Geminate recombination Cage effect Viscosity Magnetic field effects 

Notes

Acknowledgments

I am very grateful to all my co-authors whose names are presented in the cited references below. Special thanks go to Professor N. J. Turro (Columbia University) for useful discussions on the subject of this paper. I thank Dr. Jane Khudyakov (Caltech) for help with the preparation of the manuscript.

References

  1. 1.
    N.J. Turro, V. Ramamurthy, J.C. Scaiano, in Modern Molecular Photochemistry of Organic Molecules (University Science, Sausalito, 2010, Chap. 7.35, 7.36)Google Scholar
  2. 2.
    M.J. Pilling, P.W. Seakins, in Reaction Kinetics (Oxford Science, Oxford, 1997, Chap. 6.6, 6.7)Google Scholar
  3. 3.
    P. Debye, Trans. Faraday Soc. 82, 265 (1942)Google Scholar
  4. 4.
    M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1917)Google Scholar
  5. 5.
    A. Einstein, Ann. Phys. 17, 549 (1905)CrossRefGoogle Scholar
  6. 6.
    A.I. Burshtein, I.V. Khudyakov, B.I. Yakobson, Prog. React. Kinet. 13, 221 (1984)Google Scholar
  7. 7.
    A.I. Burshtein, Adv. Chem. Phys. 129, 105 (2004)CrossRefGoogle Scholar
  8. 8.
    S.A. Rice, in Comprehensive Chemical Kinetics, vol. 25, ed. by C.H. Bamford, C.F.H. Tipper (Elsevier, New York, 1985)Google Scholar
  9. 9.
    M. Terazima, Acc. Chem. Res. 33, 687 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Terazima, K. Okamoto, N. Hirota, J. Chem. Phys. 102, 2506 (1995)CrossRefGoogle Scholar
  11. 11.
    A. Rosspeintner, D.R. Katting, G. Angulo, S. Landgraf, G. Grampp, Chem. Eur. J. 14, 6213 (2008)CrossRefGoogle Scholar
  12. 12.
    J.M. Deutch, B.U. Felderhof, J. Chem. Phys. 59, 1669 (1973)CrossRefGoogle Scholar
  13. 13.
    S.H. Northrup, J.T. Hynes, J. Chem. Phys. 71, 871 (1979)CrossRefGoogle Scholar
  14. 14.
    S.F. Swallen, K. Weidemaier, M.D. Fayer, J. Chem. Phys. 104, 2976 (1996)CrossRefGoogle Scholar
  15. 15.
    R.F.C. Claridge, H. Fischer, J. Phys. Chem. 87, 1960 (1983)CrossRefGoogle Scholar
  16. 16.
    M. Lehni, H. Schuh, H. Fischer, Intern. J. Chem. Kinet. 11, 705 (1979)CrossRefGoogle Scholar
  17. 17.
    P.P. Levin, I.V. Khudyakov, J. Phys. Chem. A 115, 10996 (2011)CrossRefGoogle Scholar
  18. 18.
    V.A. Kuzmin, P.P. Levin, I.V. Khudyakov, Bull. Acad. Sci. Chem. Ser. 1987, 437Google Scholar
  19. 19.
    I.V. Khudyakov, A.I. Yasmenko, V.A. Kuzmin, Intern. J. Chem. Kinet. 11, 621 (1979)CrossRefGoogle Scholar
  20. 20.
    I.V. Khudyakov, P.P. Levin, V.A. Kuzmin, Russ. Chem. Rev. 49, 982 (1980)CrossRefGoogle Scholar
  21. 21.
    P.P. Levin, I.V. Khudyakov, V.A. Kuzmin, Intern. J. Chem. Kinet. 12, 147 (1980)CrossRefGoogle Scholar
  22. 22.
    A.I. Yasmenko, I.V. Khudyakov, V.A. Kuzmin, A.P. Khardin, Kinet. Kataliz 22, 122 (1981)Google Scholar
  23. 23.
    L.L. Koroli, I.V. Khudyakov, V.A. Kuzmin, Izv AN SSSR. Ser. Khim. 1982, 527Google Scholar
  24. 24.
    L.L. Koroli, V.A. Kuzmin, I.V. Khudyakov, Intern. J. Chem. Kinet 16, 379 (1984)CrossRefGoogle Scholar
  25. 25.
    S. Claesson, C.-M. Backman, I.V. Khudyakov, A.P. Darmanjan, V.A. Kuzmin, Chem. Scripta 10, 143 (1976)CrossRefGoogle Scholar
  26. 26.
    A.I. Yasmenko, I.V. Khudyakov, A.P. Darmanjan, V.A. Kuzmin, S. Claesson, Chem. Scripta 18, 49 (1981)Google Scholar
  27. 27.
    J.F. Garst, J. Chem. Soc. Faraday Trans. 1 85, 1245 (1989)CrossRefGoogle Scholar
  28. 28.
    R.M. Noyes, J. Am. Chem. Soc. 86, 4529 (1964)CrossRefGoogle Scholar
  29. 29.
    R.J. Hagemann, H.A. Schwarz, J. Phys. Chem. 71, 2694 (1967)CrossRefGoogle Scholar
  30. 30.
    K. Okamoto, N. Hirota, M. Terazima, J. Phys. Chem. A 101, 5269 (1997)CrossRefGoogle Scholar
  31. 31.
    R.D. Burkhard, R.J. Wong, J. Am. Chem. Soc. 95, 7203 (1973)CrossRefGoogle Scholar
  32. 32.
    T. Arita, O. Kajimoto, M. Terazima, Y.J. Kimura, Chem. Phys. 120, 7071 (2004)Google Scholar
  33. 33.
    P.P. Levin, I.V. Khudyakov, V.A. Kuzmin, J. Phys. Chem. 93, 208 (1989)CrossRefGoogle Scholar
  34. 34.
    I.V. Khudyakov, A.A. Zharikov, A.I. Burshtein, J. Chem. Phys. 132, 014104 (2010)CrossRefGoogle Scholar
  35. 35.
    I.V. Khudyakov, B.I. Yakobson, Russ. J. General Chem. 3, 54 (1984)Google Scholar
  36. 36.
    I.V. Khudyakov, N.J. Turro, Design Monomer. Polym. 13, 487 (2010)Google Scholar
  37. 37.
    I.V. Khudyakov, P.P. Levin, V.A. Kuzmin, Photochem. Photobiol. Sci. 7, 1540 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Gohdo, T. Takamasu, M. Wakasa, Phys. Chem. Chem. Phys. 13, 755 (2011)CrossRefGoogle Scholar
  39. 39.
    M. Eigen, Z. Phys. Chem. (Munich) 1, 176 (1954)CrossRefGoogle Scholar
  40. 40.
    K. Tominaga, S. Yamauchi, N. Hirota, Chem. Phys. Lett. 179, 35 (1991)CrossRefGoogle Scholar
  41. 41.
    A. Hamasaki, T. Yago, M. Wakasa, J. Phys. Chem. B 112, 14185 (2008)CrossRefGoogle Scholar
  42. 42.
    T.W. Scott, S.N. Liu, J. Phys. Chem. 93, 1393 (1989)CrossRefGoogle Scholar
  43. 43.
    T.W. Scott, C. Doubleday, Chem. Phys. Lett. 178, 9 (1991)CrossRefGoogle Scholar
  44. 44.
    Y. Hirata, Y. Niga, S. Makita, T. Okada, J. Phys. Chem. A 101, 561 (1977)CrossRefGoogle Scholar
  45. 45.
    M. Wakasa, H. Hayashi, Chem. Phys. Lett. 327, 343 (2000)CrossRefGoogle Scholar
  46. 46.
    Y. Kitahama, Y. Sakaguchi, J. Phys. Chem. A 112, 347 (2008)CrossRefGoogle Scholar
  47. 47.
    R.M. Noyes, J. Am. Chem. Soc. 78, 5486 (1956)CrossRefGoogle Scholar
  48. 48.
    M. Tachiya, Radiat Phys Chem 21, 167 (1983)Google Scholar
  49. 49.
    S. Nagakura, H. Hayashi, T. Azumi, Dynamic Spin Chemistry (Kodansha-Wiley, Tokyo, 1998)Google Scholar
  50. 50.
    H. Hayashi, Introduction to Dynamic Spin Chemistry: Magnetic Filed Effects on Chemical and Biochemical Reactions (World Scientific, Singapore, 2004)Google Scholar
  51. 51.
    J.R. Woodward, Prog. React. Kinet. 27, 165 (2002)CrossRefGoogle Scholar
  52. 52.
    I.V. Khudyakov, Yu. A Sereberennikov, N.J. Turro, Chem. Rev. 93, 537 (1993)CrossRefGoogle Scholar
  53. 53.
    C.T. Rodgers, Pure Appl. Chem. 81, 19 (2009)CrossRefGoogle Scholar
  54. 54.
    J.R. Woodward, in Carbon-Centered Free Radicals and Radical Cations: Structure, Reactivity, and Dynamics, ed. by M.D.E. Forbes (Wiley, Hoboken, Chap. 8, 2010)Google Scholar
  55. 55.
    I.V. Khudyakov, N.J. Turro, in Carbon-Centered Free radicals and Radical Cations: Structure, Reactivity, and Dynamics, ed. by M.D.E. Forbes (Wiley, Hoboken, Chap. 12, 2010)Google Scholar
  56. 56.
    N.J. Turro, Proc. Natl. Acad. Sci. USA 80, 609 (1983)CrossRefGoogle Scholar
  57. 57.
    M. Tanaka, T. Yago, Y. Sakaguchi, T. Takamasu, M. Wakasa, J. Phys. Chem. B 2011, 115 (1936)Google Scholar
  58. 58.
    E.S. Klimtchuk, G. Irinyi, I.V. Khudyakov, L.A. Margulis, V.A. Kuzmin, J. Chem. Soc., Faraday Trans. 1(85), 4119 (1989)Google Scholar
  59. 59.
    A.A. Vedeneev, N.L. Lavrik, I.V. Khudyakov, Bull. Acad. Sci. Chem. Ser. 1992, 2059Google Scholar
  60. 60.
    N.L. Lavrik, I.V. Khudyakov, High Energy Chem. 22, 512 (1988)Google Scholar
  61. 61.
    L.A. Margulis, I.V. Khudyakov, V.A. Kuzmin, Chem. Phys. Lett. 119, 244 (1985)CrossRefGoogle Scholar
  62. 62.
    J.R. Woodward, T.J. Foster, A.T. Salaoru, C.B. Vink, Phys. Chem. Chem. Phys. 10, 4020 (2008)CrossRefGoogle Scholar
  63. 63.
    L.A. Margulis, I.V. Khudyakov, V.A. Kuzmin, Chem. Phys. Lett. 124, 483 (1986)CrossRefGoogle Scholar
  64. 64.
    F.L. Cozens, J.C. Scaiano, J. Amer. Chem. Soc. 115, 5204 (1993)CrossRefGoogle Scholar
  65. 65.
    C.B. Vink, J.R. Woodward, J. Amer. Chem. Soc. 126, 16730 (2004)CrossRefGoogle Scholar
  66. 66.
    K.M. Salikhov, Magnetic Isotope Effect in Radical Reactions (Springer, Wein, 1996)CrossRefGoogle Scholar
  67. 67.
    A.L. Buchachenko, Magnetic Isotope Effect in Chemistry and Biochemistry (Nova, New York, 2009)Google Scholar
  68. 68.
    H. Schuh, H. Fischer, Intern. J. Chem. Kinet. 8, 341 (1976)CrossRefGoogle Scholar
  69. 69.
    H. Schuh, H. Fischer, Helvet. Chimica Acta 61, 2130 (1978)CrossRefGoogle Scholar
  70. 70.
    D.D. Tanner, P.M. Rakhimi, J. Am. Chem. Soc. 104, 225 (1982)CrossRefGoogle Scholar
  71. 71.
    M. Mojaza, J.B. Pedersen, Chem. Phys. Lett. 535, 201 (2012)CrossRefGoogle Scholar
  72. 72.
    J.T. Edward, J. Chem. Educ. 47, 261 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Bomar SpecialtiesTorringtonUSA
  2. 2.Solutia IncFieldaleUSA

Personalised recommendations