Research on Chemical Intermediates

, Volume 39, Issue 1, pp 279–289 | Cite as

Systematic study on the thermal cycloreversion reactivity of diarylethenes with alkoxy and alkyl groups at the reactive carbons

Article

Abstract

The relationship between the thermal cycloreversion reactivity of diarylethenes and the bulkiness of the substituents at the reactive carbons was systematically investigated. Two photochromic diarylethenes, 1,2-bis(2-isobutoxy-5-phenyl-3-thienyl)perfluorocyclopentene (1a) and 1,2-bis(2-neopentoxy-5-phenyl-3-thienyl)perfluorocyclopentene (2a), were newly synthesized and their optical properties and thermal cycloreversion reactivity were examined, because there is insufficient data for diarylethenes with alkoxy groups at the reactive carbons. The steric substituent constant was employed to correlate the relationship between the thermal cycloreversion reactivity of diarylethenes with alkyl and alkoxy groups at the reactive carbons and the bulkiness of the substituent. A good correlation was obtained for the substituent constant using CH2 instead of oxygen in the alkoxy groups. The results indicate that this is a very useful strategy for the design of novel diarylethenes with desired thermal cycloreversion reactivity.

Keywords

Photochemistry Photochromism Diarylethene Thermal bleaching reaction 

Notes

Acknowledgments

This work was partly supported by the Adaptable and Seamless Technology transfer Program (A-STEP) through target-driven R&D, FS-Stage (Exploratory Research) from the Japan Science and Technology Agency (JST). The authors also thank Nippon Zeon Co. Ltd. for providing octafluorocyclopentene.

References

  1. 1.
    G.H. Brown, Photochromism (Wiley-Interscience, New York, 1971)Google Scholar
  2. 2.
    H. Dürr, H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier, Amsterdam, 2003)Google Scholar
  3. 3.
    J.C. Crano, T. Flood, D. Knowles, A. Kumar, B.V. Gemert, Pure Appl. Chem. 68, 1395–1398 (1996)CrossRefGoogle Scholar
  4. 4.
    M. Irie, Chem. Rev. 100, 1685–1716 (2000)CrossRefGoogle Scholar
  5. 5.
    M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Nature 420, 759–760 (2002)CrossRefGoogle Scholar
  6. 6.
    B.L. Feringa, Molecular Switches (Wiley-VCH, Weinheim, 2001)CrossRefGoogle Scholar
  7. 7.
    C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, B.A. Gregg, Nature 383, 608–610 (1996)CrossRefGoogle Scholar
  8. 8.
    J.A. Delaire, K. Nakatani, Chem. Rev. 100, 1817–1846 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 446, 778–781 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Nakamura, M. Irie, J. Org. Chem. 53, 6136–6138 (1988)CrossRefGoogle Scholar
  11. 11.
    S.L. Gilat, S.H. Kawai, J.M. Lehn, Chem. Eur. J. 1, 275–284 (1995)CrossRefGoogle Scholar
  12. 12.
    S. Nakamura, S. Yokojima, K. Uchida, T. Tsujioka, A. Goldberg, A. Murakami, K. Shinoda, M. Mikami, T. Kobayashi, S. Kobatake, K. Matsuda, M. Irie, J. Photochem. Photobiol. A 200, 10–18 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Irie, T. Lifka, S. Kobatake, N. Kato, J. Am. Chem. Soc. 122, 4871–4876 (2000)CrossRefGoogle Scholar
  14. 14.
    S. Kobatake, K. Shibata, K. Uchida, M. Irie, J. Am. Chem. Soc. 122, 12135–12141 (2000)CrossRefGoogle Scholar
  15. 15.
    S. Kobatake, K. Uchida, E. Tsuchida, M. Irie, Chem. Lett. 11, 1340–1341 (2000)CrossRefGoogle Scholar
  16. 16.
    D. Chen, Z. Wang, H. Zhang, J. Mol. Struct. 859, 11–17 (2008)Google Scholar
  17. 17.
    D. Kitagawa, K. Sasaki, S. Kobatake, Bull. Chem. Soc. Jpn. 84, 141–147 (2011)CrossRefGoogle Scholar
  18. 18.
    R.W. Taft Jr, J. Am. Chem. Soc. 74, 3120–3128 (1952)CrossRefGoogle Scholar
  19. 19.
    C.K. Hancock, E.A. Meyers, B.J. Yager, J. Am. Chem. Soc. 83, 4211–4213 (1961)CrossRefGoogle Scholar
  20. 20.
    M. Charton, J. Am. Chem. Soc. 97, 1552–1556 (1975)CrossRefGoogle Scholar
  21. 21.
    K. Morimitsu, K. Shibata, S. Kobatake, M. Irie, J. Org. Chem. 67, 4574–4578 (2002)CrossRefGoogle Scholar
  22. 22.
    Y. Yokoyama, Y. Kurita, J. Synth. Org. Chem. Jpn. 49, 364–372 (1991)CrossRefGoogle Scholar
  23. 23.
    M. Irie, O. Miyatake, K. Uchida, J. Am. Chem. Soc. 114, 8715–8716 (1992)CrossRefGoogle Scholar
  24. 24.
    D. Guillaumont, T. Kobayashi, K. Kanda, H. Miyasaka, K. Uchida, S. Kobatake, K. Shibata, S. Nakamura, M. Irie, J. Phys. Chem. A 106, 7222–7227 (2002)CrossRefGoogle Scholar
  25. 25.
    K. Morimitsu, K. Shibata, S. Kobatake, M. Irie, Chem. Lett. 31, 572–573 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Hansch, A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology (Wiley, New York, 1979)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hiroaki Shoji
    • 1
  • Daichi Kitagawa
    • 1
  • Seiya Kobatake
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka City UniversityOsakaJapan

Personalised recommendations