Research on Chemical Intermediates

, Volume 39, Issue 4, pp 1533–1544 | Cite as

Sol–gel synthesis of Sm2InTaO7 and its photocatalytic activity on degradation of crystal violet dye and reduction of Cr(VI) ions

  • Leticia M. Torres-Martínez
  • Edgar Moctezuma
  • Miguel A. Ruiz-Gómez
  • Isaías Juárez-Ramírez
  • Mayra Z. Figueroa-Torres


This paper reports the synthesis of Sm2InTaO7 and its photocatalytic activity on the degradation of crystal violet dye and reduction of Cr(VI) ions in aqueous solution. Sm2InTaO7 was prepared by sol–gel method at 1,200 °C. For comparison purposes, Sm2InTaO7 was prepared also by solid-state reaction at 1,400 °C. The evolution of the crystalline phases of the sol–gel sample with the annealing temperature was followed by X-ray diffraction. The cubic crystalline structure of Sm2InTaO7 was determined by Rietveld refinement method. Specific surface area was 5 m2g−1 for sol–gel sample and 1 m2g−1 for solid-state sample, whereas energy band gap was around 3.5 eV. Sm2InTaO7 prepared by sol–gel method showed better photocatalytic activity than Sm2InTaO7 prepared by solid-state reaction for the mineralization of crystal violet dye and reduction of Cr(VI) solution under UV-light irradiation.


Sm2InTaO7 Sol–gel Photocatalysis Crystal violet dye Cr(VI) ions 



The authors would like to thank CONACYT for financial support through the CB-98740-2008, CB-84809-2007, CB-103532-2008 and CB-83923-2007, and PAICYT-UANL2009 for the projects IT176-09 and IT171-09. Also Edgar Moctezuma would like to thank the projects UASLP C10-FRC-07-03. M.Z. Figueroa-Torres thanks CONACYT for the financial support through the program “Apoyos complementarios para la consolidación institucional de grupos de investigación-retención” No. 144226. Miguel A. Ruiz-Gómez thanks CONACYT for PhD scholarship No. 239336.


  1. 1.
    J. Wang, Z. Zou, J. Ye, J. Phys. Chem. Solids 66, 349 (2005)CrossRefGoogle Scholar
  2. 2.
    L.L. Garza-Tovar, L.M. Torres-Martínez, D. Bernal-Rodríguez, R. Gómez, G. del Angel, J. Mol. Catal. A 247, 283 (2006)CrossRefGoogle Scholar
  3. 3.
    C.K. Matsuda, R. Barco, P. Sharma, V. Biondo, A. Paesano Jr, J.B.M. da Cunha, B. Hallouche, Hyperfine Interact. 175, 55 (2007)CrossRefGoogle Scholar
  4. 4.
    J.S. Gardner, M.J.P. Gingras, J.E. Greedan, Rev. Mod. Phys. 82, 53 (2010)CrossRefGoogle Scholar
  5. 5.
    N.P. Laverov, S.V. Yudintsev, T.S. Livshits, S.V. Stefanovsky, A.N. Lukinykh, R.C. Ewing, Geochem. Int. 48, 1 (2010)CrossRefGoogle Scholar
  6. 6.
    A.A. Digeos, J.A. Valdez, K.E. Sickafus, S. Atiq, R.W. Grimes, A.R. Boccaccini, J. Mater. Sci. 38, 1597 (2003)CrossRefGoogle Scholar
  7. 7.
    X. Tang, H. Ye, H. Liu, C. Ma, Z. Zhao, J. Solid State Chem. 183, 192 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Luan, H. Cai, X. Hao, J. Zhang, G. Luan, X. Wu, Z. Zou, Res. Chem. Intermed. 33, 487 (2007)CrossRefGoogle Scholar
  9. 9.
    X. Tang, H. Ye, Z. Zhao, H. Liu, C. Ma, Catal. Lett. 133, 362 (2009)Google Scholar
  10. 10.
    J. Luan, K. Ma, B. Pan, Y. Li, X. Wu, Z. Zou, J. Mol. Catal. A 321, 1 (2010)CrossRefGoogle Scholar
  11. 11.
    L.M. Torres-Martínez, I. Juárez-Ramírez, J.S. Ramos-Garza, F. Vázquez-Acosta, S.W. Lee, Advanced Research in Physics and Engineering. Proceedings of the 2nd WSEAS International Conference on Nanotechnolgy, (2010), p. 73Google Scholar
  12. 12.
    J. Luan, Z. Zou, M. Lu, G. Luan, Y. Chen, Res. Chem. Intermed. 32, 31 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Li, G. Chen, H. Zhang, Z. Li, J. Phys. Chem. Solids 70, 536 (2009)CrossRefGoogle Scholar
  14. 14.
    S.S. Kim, M.H. Park, J.K. Chung, W.J. Kim. J. Appl. Phys. 105, 061641 (2009)Google Scholar
  15. 15.
    M. Martos, B. Julián-López, E. Cordoncillo, P. Escribano, J. Phys. Chem. B 112, 2319 (2008)CrossRefGoogle Scholar
  16. 16.
    E. Forgacs, T. Cserháti, G. Oros, Environ. Int. 30, 953 (2004)CrossRefGoogle Scholar
  17. 17.
    N. Wang, Y. Xu, L. Zhu, X. Shen, H. Tang, J. Photochem. Photobiol. A 201, 121 (2009)CrossRefGoogle Scholar
  18. 18.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010)CrossRefGoogle Scholar
  19. 19.
    Q.-L. Yang, S.-Z. Kang, H. Chen, W. Bu, J. Mu, Desalination 266, 149 (2011)Google Scholar
  20. 20.
    Software Topas R, version 3, Bruker Axs West Germany (2005)Google Scholar
  21. 21.
    S.-L. Wang, C.-C. Chen, Y.-M. Tzou, C.-L. Hsu, J.-H. Chen, C.-F. Lin, J. Hazard. Mater. 164, 223 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Hagfeldt, M. Gratzel, Chem. Rev. 95, 49 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Leticia M. Torres-Martínez
    • 1
  • Edgar Moctezuma
    • 2
  • Miguel A. Ruiz-Gómez
    • 1
    • 2
  • Isaías Juárez-Ramírez
    • 1
  • Mayra Z. Figueroa-Torres
    • 1
  1. 1.Departamento de Ecomateriales y Energía, Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations