Research on Chemical Intermediates

, Volume 39, Issue 4, pp 1523–1531 | Cite as

Short time deposition of TiO2 nanoparticles on SiC as photocatalysts for the degradation of organic dyes

  • Isaías Juárez-Ramírez
  • Edgar Moctezuma
  • Leticia M. Torres-Martínez
  • Christian Gómez-Solís


The deposition of TiO2 nanoparticles on SiC was carried out by mechanical milling under different conditions. SiC–TiO2 samples were used as photocatalysts for the degradation of organic dyes such as methylene blue and rhodamine B. A short time deposition of TiO2 nanoparticles was observed during mechanical milling (2 min at 200 rpm) to cover the SiC particles. The presence of SiC and TiO2 (anatase and rutile) was confirmed by means of X-ray diffraction after thermal treatment at 450 °C. The deposition of TiO2 on SiC was corroborated by scanning electron microscopy analysis; the thickness of the thin layer of TiO2 deposited on SiC increases as the proportion of TiO2 increases. The energy band gap values obtained for these compounds were around 3.0 eV. SiC–TiO2 photocatalysts prepared by mechanical milling exhibited better activity under UV-light irradiation for the degradation of methylene blue and rhodamine B than commercial TiO2 powder (titania P25).


SiC–TiO2 Photocatalysts Mechanical milling TiO2 nanoparticles 



The authors wish to thank CONACYT for the financial support through the projects CB-84809, CB-103532 and CB-98740, and PAICYT-UANL2009 through the project IT171-09. Dr. Isaias Juarez Ramirez wants to thank to the Nanoscience and Nanotechnology Network for supporting this project. The authors would also like to thank CONACYT for the scholarship for PhD. student Christian Gomez Solis, No. 201958.


  1. 1.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahneman, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  2. 2.
    S.U.M. Khan, M. Al-shahry, W.B. Longer Jr, Science 297, 2243 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Alinsafi, F. Evenou, E.M. Abdulkarim, M.N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Dyes Pigm. 74, 439 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Zhang, T. Oyama, S. Horikoshi, J. Zhao, N. Serpone, H. Hidaka, Appl. Catal. B 42, 13 (2003)CrossRefGoogle Scholar
  5. 5.
    N. San, A. Hatiploglu, G. Kocturk, Z. Cinar, J. Photochem. Photobiol. A 146, 189 (2002)CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, X.J. Li, F.B. Li, J. Chang, J. Chem. Phys. 20, 507 (2004)Google Scholar
  7. 7.
    V. Keller, P. Bernaharat, F. Garin, J. Catal. 215, 129 (2003)CrossRefGoogle Scholar
  8. 8.
    H. Yamashita, Y. Nishida, S. Yuan, K. Mori, M. Narisawa, Y. Matsumura, T. Ohmichi, I. Katayama, Catal. Today 120, 163 (2007)CrossRefGoogle Scholar
  9. 9.
    N. Keller, V. Keller, F. Garin, M.J. Ledoux, Mater. Lett. 58, 970 (2004)CrossRefGoogle Scholar
  10. 10.
    S. Cerneaux, X. Xiong, G.P. Simon, Y.B. Cheng, L. Spiccia, Nanotechnology 18, 055708 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Isaías Juárez-Ramírez
    • 1
  • Edgar Moctezuma
    • 2
  • Leticia M. Torres-Martínez
    • 1
  • Christian Gómez-Solís
    • 2
  1. 1.Departamento de Ecomateriales y Energía, Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo León, Cd. UniversitariaSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations