Research on Chemical Intermediates

, Volume 39, Issue 4, pp 1581–1591 | Cite as

Synthesis of Sm-doped TiO2 nanotubes and analysis of their methylene blue-removal properties under dark and UV-irradiated conditions

  • Dong Jin Park
  • Tohru SekinoEmail author
  • Satoshi Tsukuda
  • Shun-Ichiro Tanaka


TiO2 nanotubes (TNTs) have received much attention over the past decade because of their unique nanostructure and physicochemical properties; in particular, TNTs can be applied in photocatalysis. In this study, degradation of methylene blue (MB) by samarium (Sm)-doped TNTs synthesized by a soft chemical process was investigated. Transmission electron microscopy revealed TNTs had diameters of approximately 10 nm and lengths of several hundreds of nanometers. MB degradation with and without ultraviolet irradiation revealed that all Sm-doped TNTs could adsorb organic molecules and were photocatalytically active. MB adsorption by Sm-doped TNT was better than by undoped TNT. Adsorption isotherm analysis showed that amounts of MB adsorbed increased on increasing the amount of Sm dopant. Introduction of Sm3+ as dopant was important for formation of oxygen vacancies in the TNTs, which enhanced molecular adsorption but did not contribute to photoreactivity because of charge state and carrier recombinations in Sm-doped TNTs.


TiO2 nanotubes Rare earth element MB Photodegradation 



This work was supported by the Global COE (Center of Excellence) Program, “Materials Integration (International Center of Education and Research), Tohoku University”, MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan, and partly by the Japan Society for the Promotion of Science (JSPS) under the Grant-in-Aid for Scientific Research (A) and by the National Research Foundation of Korea (NRF) under the Global Research Laboratory (GRL) program.


  1. 1.
    J. Li, X. Yang, X. Yu, L. Xu, W. Kang, W. Yan, H. Gao, Z. Liu, Y. Guo, Appl. Surf. Sci. 255, 3731 (2009)CrossRefGoogle Scholar
  2. 2.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388, 431 (1997)CrossRefGoogle Scholar
  3. 3.
    K. Srikanth, Md.M. Rahman, H. Tanaka, K.M. Krishna, T. Soga, M.K. Mishra, T. Jimbo, M. Umeno, Sol. Energy Mater. Sol. Cells 65, 171 (2001)CrossRefGoogle Scholar
  4. 4.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
  5. 5.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)CrossRefGoogle Scholar
  6. 6.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307 (1999)CrossRefGoogle Scholar
  7. 7.
    Z.-Y. Yuan, B.-L. Su, Colloids Surf. A 241, 173 (2004)CrossRefGoogle Scholar
  8. 8.
    V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Surf. Interface Anal. 27, 629 (1999)CrossRefGoogle Scholar
  9. 9.
    T. Sekino, Bull. Ceram. Soc. Jpn. 41, 267 (2006). (in Japanese)Google Scholar
  10. 10.
    T. Sekino, T. Okamoto, T. Kasuga, T. Kusunose, T. Nakayama, K. Niihara, Key Eng. Mater. 317–318, 251 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol. Energy Mater. Sol. Cells 93, 1875 (2009)CrossRefGoogle Scholar
  12. 12.
    Y.-H. Xu, C. Chen, X.-L. Yang, X. Li, B.-F. Wang, Appl. Surf. Sci. 255, 8624 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Sekino, in Organic, Inorganic and Metallic Nanotubes, ed. by T. Shimizu, T. Kijima (Frontier Pub, Tokyo, 2008), pp. 97–105Google Scholar
  14. 14.
    Q. Chen, W. Zhou, G.H. Du, L.M. Peng, Adv. Mater. 14, 1208 (2002)CrossRefGoogle Scholar
  15. 15.
    R. Ma, Y. Bando, T. Sasaki, Chem. Phys. Lett. 380, 577 (2003)CrossRefGoogle Scholar
  16. 16.
    C.-H. Liang, F.-B. Li, C.-S. Liu, J.-L. Lu, X.-G. Wang, Dyes Pigments 76, 477 (2006)CrossRefGoogle Scholar
  17. 17.
    T.-D. Nguyen-Phan, M.B. Song, E.W. Shin, J. Hazard. Mater. 167, 75 (2009)CrossRefGoogle Scholar
  18. 18.
    T.-D. Nguyen-Phan, M.B. Song, E.J. Kim, E.W. Shin, Microporous Mesoporous Mater. 119, 290 (2009)CrossRefGoogle Scholar
  19. 19.
    O. Levenspiel, in Chemical Reaction Engineering, (John Wiley, New York, 1990), p. 50Google Scholar
  20. 20.
    F. Galindo, R. Gomez, M. Agulilar, J. Mol. Catal. A 281, 119 (2008)CrossRefGoogle Scholar
  21. 21.
    B.J. Morgan, G.W. Watson, Phys. Rev. B 80, (2009), article number 233102Google Scholar
  22. 22.
    P. Du, A. Bueno-Lopez, M. Verbaas, A.R. Almeidea, M. Makkee, J.A. Mouljn, G. Mul, J. Catal. 260, 75 (2008)CrossRefGoogle Scholar
  23. 23.
    D.J. Park, T. Sekino, S. Tsukuda, A. Hayashi, T. Kusunose, S.-I. Tanaka, J. Solid State Chem. 184(10), 2695–2700 (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dong Jin Park
    • 1
  • Tohru Sekino
    • 1
    Email author
  • Satoshi Tsukuda
    • 1
  • Shun-Ichiro Tanaka
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendaiJapan

Personalised recommendations