Research on Chemical Intermediates

, Volume 38, Issue 9, pp 2327–2334 | Cite as

Theoretical study using DFT calculations on inhibitory action of four pyridazines on corrosion of copper in nitric acid

  • A. Zarrouk
  • B. Hammouti
  • H. Zarrok
  • R. Salghi
  • M. Bouachrine
  • F. Bentiss
  • S. S. Al-Deyab


In this part 3, The inhibitive effect of four substituted pyridazines, 5-[hydroxy(phenyl)methyl]-6-methylpyridazin-3(2H)-one (P1), 4-(2-chlorobenzyl)-6-hydrazino-3-methyl-1,6-dihydro pyridazine (P2), 5-(2,6-dichlorobenzyl)-6-methylpyridazin-3(2H)-one (P3) and 5-[(2-chlorophenyl) (hydroxy)methyl]-6-methyl pyridazin-3(2H)-one (P4) against the copper corrosion in nitric acid solution is investigated using density functional approach B3LYP/6-31G* calculations. Results obtained by weight loss and polarization measurements in part 1 show that P1, P3, and P4 are the best inhibitors. The kinetic and adsorption parameters obtained in part 2 indicated that pyridazine acted preferentially by physical adsorption. The calculated quantum chemical parameters are the highest occupied molecular orbital, the lowest unoccupied molecular orbital, the separation energy, dipole moment, electronegativity, electron affinity, global hardness, softness, ionization potential, the fraction of electrons transferred, and the total energy. The obtained data are discussed according to the inhibition efficiencies obtained.


Copper Nitric acid Inhibitors Pyridazines DFT calculations 



Two of the authors (Prof S. S. Deyab and Prof B. Hammouti) extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project.


  1. 1.
    C. David Young (ed.), Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, Chap. 5 (Wiley, New York, 2001), p. 42. ISBNs: 0-471-22065-5Google Scholar
  2. 2.
    J.C. Crame (ed.), Essentials of Computational Chemistry, Theories and Models, Chap. 8, 2nd edn. (Wiley, New York, 2004), p. 271Google Scholar
  3. 3.
    G. Gece, Corros. Sci. 50, 2981 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Hinchliffe, Modelling Molecular Structures (Wiley, New York, 1994)Google Scholar
  5. 5.
    A. Hinchliffe (ed.), Chemical Modelling from Atoms to Liquids (Wiley, New York, 1999), p. 4Google Scholar
  6. 6.
    I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Int. J. Electrochem. Sci. 4, 863 (2009)Google Scholar
  7. 7.
    M.G. Hosseini, M.R. Arshadi, Int. J. Electrochem. Sci. 4, 1339 (2009)Google Scholar
  8. 8.
    F.M. Alkharafi, A.M. El-Shamy, B.G. Ateya, Int. J. Electrochem. Sci. 4, 1351 (2009)Google Scholar
  9. 9.
    M.M. Antonijevic, M.B. Petrovic, Int. J. Electrochem. Sci. 3, 1 (2008)Google Scholar
  10. 10.
    A. Chetouani, B. Hammouti, A. Aouniti, N. Benchat, T. Benhadda, Propag. Org. Coat. 45, 373 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Chetouani, A. Aouniti, B. Hammouti, N. Benchat, T. Benhadda, S. Kertit, Corros. Sci. 45, 1675 (2003)CrossRefGoogle Scholar
  12. 12.
    M. Bouklah, N. Benchat, A. Aouniti, B. Hammouti, M. Benkaddour, M. Lagrenée, H. Vezin, F. Bentiss, Propag. Org. Coat. 51, 118 (2004)CrossRefGoogle Scholar
  13. 13.
    M. Bouklah, N. Benchat, B. Hammouti, S. Kertit, Mater. Lett. 60, 1901 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Zarrouk, T. Chelfi, A. Dafali, B. Hammouti, S.S. Al-Deyab, I. Warad, N. Benchat, M. Zertoubi, Int. J. Electrochem. Sci. 5, 696 (2010)Google Scholar
  15. 15.
    A. Zarrouk, I. Warad, B. Hammouti, A. Dafali, S.S. Al-Deyab, N. Benchat, Int. J. Electrochem. Sci. 5, 516 (2010)Google Scholar
  16. 16.
    K. Laarej, M. Bouachrine, S. Radi, S. Kertit, B. Hammouti, E-J. Chem. 7, 419 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Mihit, K. Laarej, H. Abou El Makarim, L. Bazzi, R. Salghi, B. Hammouti, Arab. J. Chem 3, 55 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Bouklah, H. Harek R. Touzani, B. Hammouti, Y. Harek, Arab. J. Chem. 5, 163 (2012)Google Scholar
  19. 19.
    J. Cruz, T. Pandiyan, E. García-Ochoa, J. Electroanal. Chem. 583, 8 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Cruz, R. Martínez, J. Genesca, E. García-Ochoa, J. Electroanal. Chem. 566, 111 (2004)CrossRefGoogle Scholar
  21. 21.
    C.O¨. g˘retir, G. Bereket, J. Mol. Struct. 488, 223 (1999)Google Scholar
  22. 22.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, Corros. Sci. 50, 865–871 (2008)Google Scholar
  23. 23.
    Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian Inc., Pittsburgh, 2003)Google Scholar
  24. 24.
    S.G. Zhang, W. Lei, M.Z. Xia, F.Y. Wang, J. Mol. Struct. 732, 175 (2005)Google Scholar
  25. 25.
    M. Lashgari, M.R. Arshadi, G.A. Parsafar, Corrosion 61, 778 (2005)CrossRefGoogle Scholar
  26. 26.
    V.S. Sastri, J.R. Perumareddi, Corrosion 53, 671 (1996)Google Scholar
  27. 27.
    R.G. Pearson, Inorg. Chem. 27, 734 (1988)CrossRefGoogle Scholar
  28. 28.
    S. Martinez, Mater. Chem. Phys. 77, 97 (2002)CrossRefGoogle Scholar
  29. 29.
    Z. Zhou, R.G. Parr, J. Am. Chem. Soc. 112, 5720 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Zarrouk
    • 1
  • B. Hammouti
    • 1
  • H. Zarrok
    • 2
  • R. Salghi
    • 3
  • M. Bouachrine
    • 4
  • F. Bentiss
    • 5
  • S. S. Al-Deyab
    • 6
  1. 1.LCAE-URAC18, Faculté des SciencesUniversité Mohammed IerOujdaMorocco
  2. 2.Laboratoire des Procèdes de SéparationUniversité Ibn TofailKenitraMorocco
  3. 3.Equipe de Génie de L’Environnement et de Biotechnologie, Ecole Nationale des Sciences AppliquéesUniversité Ibn ZohrAgadirMorocco
  4. 4.UMIM, Faculté Polydisciplinaire de TazaUniversité Sidi Mohamed Ben AbdellahTazaMorocco
  5. 5.Laboratoire de Chimie de Coordination et D’Analytique, Faculté des SciencesUniversité Chouaib DoukkaliEl JadidaMorocco
  6. 6.Petrochemical Research Chair, Chemistry Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations