Research on Chemical Intermediates

, Volume 38, Issue 8, pp 1975–1985 | Cite as

Removal of an organic pollutant from waste water by photocatalytic behavior of AgX/TiO2 loaded on mordenite nanocrystals

  • Mohsen Padervand
  • Hadi Salari
  • Seyedsaeid Ahmadvand
  • Mohammad Reza Gholami


Mordenite (MOR) nanocrystals were synthesized using the hydrothermal method. Sol–gel and deposition methods were utilized to modify the zeolite surface with TiO2 and then AgBr or AgCl particles. Photocatalysts were characterized by using X-ray diffraction, Brunauer–Emmett–Teller (BET), and scanning electron microscopy techniques. Activity was evaluated by photodegradation of Acid Blue 92 as an azo dye. The effect of silver halide deposition on the photocatalytic behavior of the prepared nanocomposites was studied under both ultraviolet (UV) and visible light, and the results were compared. The results showed that AgCl/TiO2/MOR was more active under UV, while with visible source, AgBr/TiO2/MOR exhibited better photocatalytic performance. A mechanism for the reaction is also proposed.


Mordenite Photocatalytic degradation TiO2 Acid Blue 92 


  1. 1.
    H. How, J. Chem. Soc. 17, 100 (1864)CrossRefGoogle Scholar
  2. 2.
    P.K. Bajpai, Zeolite 6, 2 (1986)CrossRefGoogle Scholar
  3. 3.
    L.D. Fernandes, J.L.F. Monteiro, E.F. Sousa-Aguiar, A. Martinez, A. Carma, J. Catal. 177, 363 (1998)CrossRefGoogle Scholar
  4. 4.
    B.O. Hincapie, L.J. Garces, Q.Z.A. Sacco, S.L. Suib, Microporous Mesoporous Mater. 67, 19 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Yamashita, M. Anpo, Curr. Opin. Solid State Mater. Sci. 7, 471 (2004)CrossRefGoogle Scholar
  6. 6.
    H. Yamashita, K. Maekawa, H. Nakao, M. Anpo, Appl. Surf. Sci. 237, 393 (2004)CrossRefGoogle Scholar
  7. 7.
    S.D. Mo, L.B. Lin, D.L. Lin, J. Phys. Chem. Solids 55, 1309 (1994)CrossRefGoogle Scholar
  8. 8.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000)CrossRefGoogle Scholar
  9. 9.
    V. Subramanian, E. Wolf, P. Kamat, J. Phys. Chem. B 105, 11439 (2001)CrossRefGoogle Scholar
  10. 10.
    V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, J. Photochem. Photobiol. A 148, 233 (2002)CrossRefGoogle Scholar
  11. 11.
    C.Y. Wang, C.Y. Liu, X. Zheng, J. Chen, T. Shen, Colloids Surf. A 131, 271 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Padervand, M. Tasviri, M.R. Gholami, Chem. Pap. 65, 280 (2011)CrossRefGoogle Scholar
  13. 13.
    H. Pengwei, Y. Yongsheng, L. Songtian, L. Huaming, H. Weihong, Desalination 256, 196 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Hu, Y.Q. Lan, J.H. Qu, X.X. Hu, A. Wang, J. Phys, Chem. B 110, 4066 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Anderson, H. Birkedal, N.R. Franklin, T. Ostomel, S. Boettcher, A.E.C. Palmqvist, G.D. Stucky, Chem. Mater. 17, 1409 (2005)CrossRefGoogle Scholar
  16. 16.
    Y.Z. Li, H. Zhang, Z.M. Guo, J.J. Han, X.J. Zhao, Q.N. Zhao, S. Kim, Langmuir 24, 8351 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Pankaj, P. Rajaram, R. Tomar, J. Colloid Interface Sci. 325, 2547 (2008)Google Scholar
  18. 18.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mohsen Padervand
    • 1
  • Hadi Salari
    • 1
  • Seyedsaeid Ahmadvand
    • 1
  • Mohammad Reza Gholami
    • 1
  1. 1.Department of ChemistrySharif University of TechnologyTehranIran

Personalised recommendations