Advertisement

Research on Chemical Intermediates

, Volume 38, Issue 7, pp 1311–1321 | Cite as

Corrosion inhibition of mild steel by Laurus nobilis leaves extract as green inhibitor

  • Avcı Gülşen
Article

Abstract

The efficiency of Laurus nobilis leaves’ extract as a corrosion inhibitor for mild steel in acidic medium (1 M H2SO4) was investigated by use of the electrochemical techniques potentiodynamic polarization, electrochemical impedance spectroscopy, and polarization resistance measurements. According to the experimental results, L. nobilis extract acts as a good corrosion inhibitor. In the presence of the inhibitor, corrosion potential shifted toward a more negative value than for the blank solution. Inhibitor efficiency increased with increasing inhibitor concentration, as expected. According to the potentiodynamic polarization results the corrosion of mild steel increased with increasing temperature both in the presence and absence of the inhibitor. The activation energy (E a) of the corrosion process was calculated from the variation of corrosion current density with temperature.

Keywords

Mild steel Electrochemical impedance spectroscopy (EIS) Inhibitor Laurus nobilis leaves 

Notes

Acknowledgment

The author is grateful to Mersin University research fund for providing financial support.

References

  1. 1.
    F. Bentiss, F. Gassama, D. Barbry, L. Gengembre, H. Vezin, M. Lagrenée, M. Traisnel, Appl. Surf. Sci. 252, 2684 (2006)CrossRefGoogle Scholar
  2. 2.
    K.F. Khaled, N. Hackerma, Electrochim. Acta 48, 2715 (2003)CrossRefGoogle Scholar
  3. 3.
    M.A. Quraishi, R. Sardar, Mater. Chem. Phys. 78, 425 (2003)CrossRefGoogle Scholar
  4. 4.
    M. Hosseini, F. Stijn, L. Mertens, M. Ghorbani, M.R. Arshadi, Mater. Chem. Phys. 78, 800 (2003)CrossRefGoogle Scholar
  5. 5.
    G. Avci, Mater. Chem. Phys. 112, 234 (2008)CrossRefGoogle Scholar
  6. 6.
    E. Stupnišek-Lisac, S. Podbršček, T. Sorić, J. Appl. Electrochem. 24, 779 (1994)CrossRefGoogle Scholar
  7. 7.
    E.E. Ebenso, Mater. Chem. Phys. 79, 58 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Scendo, Corros. Sci. 50, 1584 (2008)CrossRefGoogle Scholar
  9. 9.
    P.B. Raja, M.G. Sethuraman, Mater. Lett. 62, 113 (2008)CrossRefGoogle Scholar
  10. 10.
    F. Conforti, G. Statti, D. Uzunov, F. Menichini, Biol. Pharm. Bull. 29, 2056 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Yurt, A. Balaban, S.U. Kandemir, G. Bereket, B. Erk, Mater. Chem. Phys. 85, 420 (2004)CrossRefGoogle Scholar
  12. 12.
    R. Solmaz, E. Altunbaş, G. Kardaş, Mater. Chem. Phy. 125, 796 (2011)CrossRefGoogle Scholar
  13. 13.
    E. Navvaro-Flores, S. Chong, Z. Omanovic, J. Mol. Catal. A Chem. 226, 179 (2005)CrossRefGoogle Scholar
  14. 14.
    W.Li. Qiao, C.He. Pei, B. Hou, Electrochim. Acta 52, 6386 (2007)CrossRefGoogle Scholar
  15. 15.
    O.L. Riggs Jr., Corrosion inhibitors, 2nd edn. (C.C Nathan Houston TX), (1973)Google Scholar
  16. 16.
    G. Moretti, F. Guidi, Corros. Sci. 44, 1995 (2002)CrossRefGoogle Scholar
  17. 17.
    F.M. Donahue, K.J. Nobe, Electrochem. Soc. 112, 886 (1965)CrossRefGoogle Scholar
  18. 18.
    E.E. Oquzie, Mater. Chem. Phys 99, 441 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Education Faculty, Chemistry EducationMersin UniversityMersinTurkey

Personalised recommendations