Advertisement

Research on Chemical Intermediates

, Volume 38, Issue 2, pp 595–613 | Cite as

Preparation of Cu-doped TiO2 via refluxing of alkoxide solution and its photocatalytic properties

  • Hiromasa Nishikiori
  • Takashi Sato
  • Satoshi Kubota
  • Nobuaki Tanaka
  • Yuichiro Shimizu
  • Tsuneo Fujii
Article

Abstract

Cu-doped TiO2 was prepared by the refluxing of a mixture of copper and titanium alkoxides. The refluxing improved the Cu2+ dispersion in the TiO2 and formed effective Ti–O–Cu bonds. The impurity states due to the highly dispersed Cu2+ were presumed to trap the electrons in the conduction band of the TiO2 and prevent charge recombination of the electrons and holes. Consequently, the prolonged charge separation duration was suggested to enhance the photocatalytic activity of the Cu-doped TiO2. This enhancement was confirmed by the hydroxyl radical generation and organic compound degradation. The Ti–O–Cu bonds and electronic interaction between Cu and Ti should effectively promote the electron trapping. The Cu-doped TiO2 exhibited a visible light-induced activity due to the transition from the TiO2 valence band to the Cu2+ impurity states.

Keywords

Cu-doped TiO2 Refluxing Metal alkoxides Sol–gel method Photocatalysis 

Notes

Acknowledgments

The authors thank Prof. Kenichi Tenya of this university for his technical assistance with the XPS analysis. The authors also thank Prof. Tomohiko Okada of this university for his technical assistance with the volumetric gas adsorption analysis.

References

  1. 1.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C-Photochem. Rev. 1, 1 (2000)CrossRefGoogle Scholar
  2. 2.
    D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C-Photochem. Rev. 6, 186 (2005)CrossRefGoogle Scholar
  3. 3.
    G. Colón, M. Maicu, M.C. Hidalgo, J.A. Navío, Appl. Catal. B-Environ. 67, 41 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Appl. Surf. Sci. 254, 2569 (2008)CrossRefGoogle Scholar
  5. 5.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 1369 (1994)Google Scholar
  6. 6.
    H. Irie, S. Miura, K. Kamiya, K. Hashimoto, Chem. Phys. Lett. 457, 202 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D.A. Tryk, T. Yokoyama, K. Hashimoto, J. Phys. Chem. C 113, 10761 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Nishikiori, M. Tagahara, L. Mukoyama, T. Fujii, Res. Chem. Intermed. 36, 947 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Nishikiori, M. Furukawa, T. Fujii, Appl. Catal. B-Environ. 102, 470 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Celik, Z. Gokcen, N.F. Ak Azem, M. Tanoglu, O.F. Emrullahoglu, Mater. Sci. Eng. B 132, 258 (2006)CrossRefGoogle Scholar
  11. 11.
    I.H. Tseng, J.C.S. Wu, H.Y. Chou, J. Catal. 221, 432 (2004)CrossRefGoogle Scholar
  12. 12.
    R. López, R. Gómez, M.E. Llanos, Catal. Today 148, 103 (2009)CrossRefGoogle Scholar
  13. 13.
    R.C. Mehrotra, J. Non-Cryst. Solids 100, 1 (1988)CrossRefGoogle Scholar
  14. 14.
    T. Monde, H. Kozuka, S. Sakka, Chem. Lett. 17, 287 (1988)CrossRefGoogle Scholar
  15. 15.
    T. Satoh, M. Ogawa, M. Kondo, J. Ceram. Soc. Jpn. 106, 1151 (1998)CrossRefGoogle Scholar
  16. 16.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)CrossRefGoogle Scholar
  17. 17.
    E.P. Barrett, L.G. Joyner, P.H. Halenda, J. Am. Chem. Soc. 73, 373 (1951)CrossRefGoogle Scholar
  18. 18.
    T. Hirakawa, Y. Nosaka, Langmuir 18, 3247 (2002)CrossRefGoogle Scholar
  19. 19.
    T. Hirakawa, K. Yawata, Y. Nosaka, Appl. Catal. A-Gen. 325, 105 (2007)CrossRefGoogle Scholar
  20. 20.
    H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, J. Mater. Chem. 11, 1694 (2001)CrossRefGoogle Scholar
  21. 21.
    A.J. Maira, K.L. Yeung, C.Y. Lee, P.L. Yue, C.K. Chan, J. Catal. 192, 185 (2000)CrossRefGoogle Scholar
  22. 22.
    J. Yu, X. Zhao, Q. Zhao, Mater. Chem. Phys. 69, 25 (2001)CrossRefGoogle Scholar
  23. 23.
    G. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, J. Phys. Chem. C 112, 19040 (2008)Google Scholar
  24. 24.
    Q. Fang, M. Meier, J.J. Yu, Z.M. Wang, J.Y. Zhang, J.X. Wu, A. Kenyon, P. Hoffmann, I.W. Boyd, Mater. Sci. Eng. B 105, 209 (2003)CrossRefGoogle Scholar
  25. 25.
    M. You, T.G. Kim, Y.M. Sung, Cryst. Growth Des. 10, 983 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Pan, J.J. Zou, X. Zhang, L. Wang, Ind. Eng. Chem. Res. 49, 8526 (2010)CrossRefGoogle Scholar
  27. 27.
    W. Zhang, Y. Li, S. Zhu, F. Wang, Catal. Today 589, 93 (2004)Google Scholar
  28. 28.
    T. Sreethawong, S. Yoshikawa, Catal. Commun. 6, 661 (2005)CrossRefGoogle Scholar
  29. 29.
    T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobio. A Chem. 140, 163 (2001)CrossRefGoogle Scholar
  30. 30.
    S. Senthilkumaar, K. Porkodi, R. Gomathi, A.G. Maheswari, N. Manonmani, Dyes Pigments 69, 22 (2006)CrossRefGoogle Scholar
  31. 31.
    Z. Yu, S.S.C. Chuang, Appl. Catal. B-Environ. 83, 277 (2008)CrossRefGoogle Scholar
  32. 32.
    H.W.P. Carvalho, A.P.L. Batista, P. Hammer, T.C. Ramalho, J. Hazard. Mater. 184, 273 (2010)CrossRefGoogle Scholar
  33. 33.
    L. Yu, S. Yuan, L. Shi, Y. Zhao, J. Fang, Microporous Mesoporous Mater. 134, 108 (2010)CrossRefGoogle Scholar
  34. 34.
    S.K. Joung, T. Amemiya, M. Murabayashi, K. Itoh, Chem. Eur. J. 12, 5526 (2006)CrossRefGoogle Scholar
  35. 35.
    R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108, 10617 (2004)CrossRefGoogle Scholar
  36. 36.
    K. Oki, S. Tsuchida, H. Nishikiori, N. Tanaka, T. Fujii, Int. J. Photoenergy 5, 11 (2003)CrossRefGoogle Scholar
  37. 37.
    P.B. Amama, K. Itoh, M. Murabayashi, J. Mol. Catal. A-Chem. 176, 165 (2001)CrossRefGoogle Scholar
  38. 38.
    J.S. Kim, K. Itoh, M. Murabayashi, B.A. Kim, Chemosphere 38, 2969 (1999)CrossRefGoogle Scholar
  39. 39.
    M. Kang, J.H. Lee, S.H. Lee, C.H. Chung, K.J. Yoon, K. Ogino, S. Miyata, S.J. Choung, J. Mol. Catal. A-Chem. 193, 273 (2003)CrossRefGoogle Scholar
  40. 40.
    W.A. Jacoby, M.R. Nimlos, D.M. Blake, R.D. Noble, C.A. Koval, Environ. Sci. Technol. 28, 1661 (1994)CrossRefGoogle Scholar
  41. 41.
    J. Fan, J.T. Yates Jr, J. Am. Chem. Soc. 118, 4686 (1996)CrossRefGoogle Scholar
  42. 42.
    M.D. Driessen, A.L. Goodman, T.M. Miller, G.A. Zaharias, V.V. Grassian, J. Phys. Chem. B 102, 549 (1998)CrossRefGoogle Scholar
  43. 43.
    J.S. Kim, K. Itoh, M. Murabayashi, Chemosphere 36, 483 (1998)CrossRefGoogle Scholar
  44. 44.
    Y. Yokosuka, K. Oki, H. Nishikiori, Y. Tatsumi, N. Tanaka, T. Fujii, Res. Chem. Intermed. 35, 43 (2009)CrossRefGoogle Scholar
  45. 45.
    M. Anpo, Y. Kubokawa, T. Fujii, S. Suzuki, J. Phys. Chem. 88, 2527 (1984)Google Scholar
  46. 46.
    M. Anpo, T. Shima, T. Fujii, S. Suzuki, Chem. Lett. 16, 1997 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hiromasa Nishikiori
    • 1
  • Takashi Sato
    • 1
  • Satoshi Kubota
    • 1
  • Nobuaki Tanaka
    • 1
  • Yuichiro Shimizu
    • 2
  • Tsuneo Fujii
    • 1
  1. 1.Department of Environmental Science and Technology, Graduate School of Science and TechnologyShinshu UniversityNaganoJapan
  2. 2.Research & Development Division, Process Development DepartmentShinko Electric Industries Co., Ltd.NaganoJapan

Personalised recommendations