Advertisement

Research on Chemical Intermediates

, Volume 38, Issue 2, pp 323–336 | Cite as

Preparation, characterization, and photocatalytic activity of polyaniline/ZnO nanocomposite

  • Ali Olad
  • Rahimeh Nosrati
Article

Abstract

Polyaniline (PANI)/zinc oxide (ZnO) nanocomposite was synthesized by in-situ polymerization. X-ray diffraction patterns, UV–visible spectroscopy, SEM, and TEM were used to characterize the composition and structure of the nanocomposite. Nanostructured PANI/ZnO composite was used as photocatalyst in the photodegradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PANI/ZnO nanocomposite under UV and visible light irradiation was evaluated and was compared with that of ZnO nanoparticles. ZnO/PANI core–shell nanocomposite had greater photocatalytic activity than ZnO nanoparticles and pristine PANI under visible light irradiation. According to these results, application of PANI as a shell on the surface of ZnO nanoparticles causes the enhanced photocatalytic activity of the PANI/ZnO nanocomposite. Also UV–visible spectroscopy studies showed that the absorption peak for PANI/ZnO nanocomposite has a red shift toward visible wavelengths compared with the ZnO nanoparticles and pristine PANI. The effect of different operating conditions on the photocatalytic performance of PANI/ZnO nanocomposite in the photodegradation of methylene blue dye molecules was investigated in a bath experimental setup.

Keywords

Conducting polymers Polyaniline ZnO Photocatalyst 

Notes

Acknowledgments

The financial support of this research by the University of Tabriz is gratefully acknowledged.

References

  1. 1.
    J.H. Chen, C.Y. Cheng, W.Y. Chiu, C.F. Lee, N.Y. Liang, Eur. Polym. J. 44, 3271 (2008)CrossRefGoogle Scholar
  2. 2.
    B.K. Sharma, A.K. Gupta, N. Khare, S.K. Dhawan, H.C. Gupta, Synth. Met. 159, 391 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Li, J. Gong, M. McCune, G. He, Y. Deng, Synth. Met. 160, 499 (2010)CrossRefGoogle Scholar
  4. 4.
    B.K. Sharma, A.K. Gupta, N. Khare, S.K. Dhawan, H.C. Gupta, J. Alloy Compd. 477, 370 (2009)CrossRefGoogle Scholar
  5. 5.
    S. Ameen, M.S. Akhtar, S.G. Ansari, O.B. Yang, H.S. Shin, Superlattice Microst. 46, 872 (2009)CrossRefGoogle Scholar
  6. 6.
    S.P. Sharma, M.V.S. Suryanarayana, A.K. Nigam, A.S. Chauhan, L.N.S. Tomar, Catal. Commun. 10, 905 (2009)CrossRefGoogle Scholar
  7. 7.
    A.H. Gemeay, R.G. El-Sharkawy, I.A. Mansour, A.B. Zaki, J. Colloid Interf. Sci. 308, 385 (2007)CrossRefGoogle Scholar
  8. 8.
    R. Qiu, L. Song, Y. Mo, D. Zhang, E. Brewer, React. Kinet. Catal. 94, 183 (2008)CrossRefGoogle Scholar
  9. 9.
    D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, C.D. Lokhande, Sens. Actuators B Chem. 147, 488 (2010)CrossRefGoogle Scholar
  10. 10.
    A.A. Khan, M. Khalid, J. Appl. Polym. Sci. 117, 1601 (2010)Google Scholar
  11. 11.
    X. Chen, Z. Zhou, W. Lv, T. Huang, S. Hu, Mater. Chem. Phys. 115, 258 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Sonawane, B. Neppolian, B. Teo, F. Grieser, M. Ashokkumar, J. Phys. Chem. C 114, 5148 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Yang, Y. Chu, Y. Zhang, F. Yang, J. Liu, J. Solid State Chem. 179, 470 (2006)CrossRefGoogle Scholar
  14. 14.
    Y. He, Powder Technol. 147, 59 (2004)CrossRefGoogle Scholar
  15. 15.
    X. Peng, Y. Chen, F. Li, W. Zhou, Y. Hu, Appl. Surf. Sci. 255, 7158 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Chang, X. Cao, H. Zeng, J. Phys. Chem. C 113, 15544 (2009)CrossRefGoogle Scholar
  17. 17.
    W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo, Y. Zhang, J. Hazard. Mater. 152, 172 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Chakrabarti, B.K. Dutta, J. Hazard. Mater. B 112, 269 (2004)CrossRefGoogle Scholar
  19. 19.
    S. Ameen, M.S. Akhtar, Y.S. Kim, O.B. Yang, H.S. Shin, Colloid Polym. Sci. 289, 415 (2011)CrossRefGoogle Scholar
  20. 20.
    C. Wang, X. Wang, B.Q. Xu, J. Zhao, B. Mai, P. Peng, G. Sheng, J. Fu, J. Photoch, A. Photobio, Chem. 168, 47 (2004)Google Scholar
  21. 21.
    M.A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater. B 133, 226 (2006)CrossRefGoogle Scholar
  22. 22.
    R. Qiu, D. Zhang, Y. Mo, L. Song, E. Brewer, X. Huang, Y. Xiong, J. Hazard. Mater. 156, 80 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Yang, Y. Ishikawa, H. Itoh, Q. Feng, J. Colloid Interface Sci. 356, 734 (2011)CrossRefGoogle Scholar
  24. 24.
    X. Liu, H. Wu, F. Ren, G. Qiu, M. Tang, Mater. Chem. Phys. 109, 5 (2008)CrossRefGoogle Scholar
  25. 25.
    N.I. Kovtyukhova, A.D. Gorchinskiy, C. Waraksa, Mater. Sci. Eng. B 69–70, 424 (2000)CrossRefGoogle Scholar
  26. 26.
    S. Mridha, D. Basak, Appl. Phys. Lett. 92, 142111 (2008)CrossRefGoogle Scholar
  27. 27.
    H. Zhang, R. Zong, Y. Zhu, J. Phys. Chem. C 113, 4605 (2009)CrossRefGoogle Scholar
  28. 28.
    J. Tschirch, R. Dillert, D. Bahnemann, B. Proft, A. Biedermann, B. Goer, Res. Chem. Intermed. 34, 381 (2008)CrossRefGoogle Scholar
  29. 29.
    F. Ping-feng, Z. Zhuo, P. Peng, D. Xue-gang, The Chinese Journal of Process Engineering 8, 65 (2008)Google Scholar
  30. 30.
    J. Kim, W. Choi, H. Park, Res. Chem. Intermed. 36, 127 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations