Advertisement

Research on Chemical Intermediates

, Volume 37, Issue 2–5, pp 515–522 | Cite as

Gold nanoparticles fabricated by pulsed laser ablation in supercritical CO2

  • Siti Machmudah
  • Motonobu Goto
  • Wahyudiono
  • Yutaka Kuwahara
  • Mitsuru Sasaki
Article

Abstract

Nanosecond pulsed laser ablation (PLA) of gold plate with an excitation wavelength of 532 nm was carried out in supercritical CO2 (scCO2) to fabricate gold nanoparticles. Surface morphology of the gold plate after irradiation and the crater depth after PLA were observed by scanning electron microscopy and laser scanning microscopy, while extinction spectra of gold nanoparticles collected in the glass slide was measured by UV–Vis spectrophotometer. The gold plate was ablated at various scCO2 densities and irradiation times at constant temperature of 40°C. The ablation was also conducted at atmospheric condition with air to evaluate the environmental dependence of ablation. Both surface morphology of the irradiated gold plate and crater depth formation were significantly affected by the changes in scCO2 density, the surrounding environment, and irradiation time. As expected, the increasing scCO2 density resulted in a deeper ablation crater, however, the deepest crater was obtained at a density of 0.63 g/cm3 or pressure of 10 MPa. Gold nanoparticles generated by PLA in scCO2 have been confirmed at the spectra band near 530 nm.

Keywords

Gold nanoparticles Pulsed laser ablation Supercritical CO2 

Notes

Acknowledgments

This work was supported by Kumamoto University Global COE Program “Global Initiative Center for Pulsed Power Engineering” and Japan Society for the Promotion of Science (JSPS).

References

  1. 1.
    P.S. Shah, S. Husain, K.P. Johnston, B.A. Korgel, J. Phys. Chem. B 105, 9433 (2001)CrossRefGoogle Scholar
  2. 2.
    P.S. Shah, S. Husain, K.P. Johnston, B.A. Korgel, J. Phys. Chem. B 106, 12178 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Kameo, T. Yoshimura, K. Esumi, Colloids Surf. A 215, 181 (2003)CrossRefGoogle Scholar
  4. 4.
    M.C. McLeod, W.F. Gale, C.B. Roberts, Langmuir 20, 7078 (2004)CrossRefGoogle Scholar
  5. 5.
    K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel, J. Am. Chem. Soc. 123, 7797 (2001)CrossRefGoogle Scholar
  6. 6.
    K. Kneipp, H. Kneipp, J. Kneipp, Acc. Chem. Res. 39, 443 (2006)CrossRefGoogle Scholar
  7. 7.
    D.F. Perepichka, F. Rosei, Angew. Chem. Int. Ed. 46, 6006 (2007)CrossRefGoogle Scholar
  8. 8.
    T. Ishida, M. Haruta, Angew. Chem. Int. Ed. 46, 7154 (2007)CrossRefGoogle Scholar
  9. 9.
    P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Acc. Chem. Res. 41, 1578 (2008)CrossRefGoogle Scholar
  10. 10.
    C. He, T. Sasaki, Y. Shimizu, N. Koshizaki, Appl. Surf. Sci. 254, 2196 (2008)CrossRefGoogle Scholar
  11. 11.
    C. Liang, Y. Shimizu, M. Masuda, T. Sasaki, N. Koshizaki, Chem. Mater. 16, 963 (2004)CrossRefGoogle Scholar
  12. 12.
    V. Amendola, G.A. Rizzi, S. Polizzi, M. Meneghetti, J. Phys. Chem. 109, 23125 (2005)Google Scholar
  13. 13.
    N. Takada, H. Ushida, K. Sasaki, J. Phys. Conf. Ser. 59, 40 (2007)CrossRefGoogle Scholar
  14. 14.
    K. Saitow, J. Phys. Chem. B 109, 3731 (2005)CrossRefGoogle Scholar
  15. 15.
    K. Saitow, T. Yamamura, T. Minami, J. Phys. Chem. C 112, 18340 (2008)Google Scholar
  16. 16.
    Y. Kuwahara, T. Saito, M. Haba, T. Iwanaga, M. Sasaki, M. Goto, Jpn. J. Appl. Phys. 48, 040207 (2009)CrossRefGoogle Scholar
  17. 17.
    NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology [http://webbook.nist.gov/chemistry]

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Siti Machmudah
    • 1
  • Motonobu Goto
    • 1
  • Wahyudiono
    • 2
  • Yutaka Kuwahara
    • 2
  • Mitsuru Sasaki
    • 2
  1. 1.Bioelectrics Research CenterKumamoto UniversityKumamotoJapan
  2. 2.Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan

Personalised recommendations