Advertisement

Research on Chemical Intermediates

, Volume 37, Issue 2–5, pp 131–143 | Cite as

A new green technology: hydrothermal electrolysis for the treatment of biodiesel wastewater

  • Asli Yuksel
  • Mitsuru Sasaki
  • Motonobu Goto
Article

Abstract

Recently, biodiesel has become more attractive as an alternative diesel fuel because it is renewable, biodegradable, non-toxic, and environmentally friendly. In this study, we have developed a new green process called “hydrothermal electrolysis”, by which industrial wastewater can be converted to more value-added chemicals under high-temperature and high-pressure aqueous conditions. We prepared model biodiesel wastewater and carried out hydrothermal electrolysis experiments by using both a continuous flow reactor and a batch autoclave. Current efficiencies and the effects of reaction time and reaction temperature on the decomposition of biodiesel wastewater and removal of total organic carbon (TOC) were investigated under various operating conditions. It was found that conversions of both TOC and glycerol inside the model biodiesel wastewater increased with increasing applied current. With the autoclave, the maximum glycerol conversion was recorded as 83% by applying 1 A current at 250 °C, whereas with the flow reactor, 75% of glycerol was converted into gas and liquid products under the effect of 1 A current for 60 min at a reaction temperature of 280 °C. In the case of TOC removal from the liquid product solution, under identical conditions, it was found that 23 and 15.9% TOC conversions were achieved by the batch and continuous flow reactors, respectively.

Keywords

Hydrothermal electrolysis Biodiesel wastewater Glycerol 

Notes

Acknowledgments

The authors like to thank the Kumamoto University Global Centre of Excellence (COE) Program “Global Initiative Centre for Pulsed Power Engineering” for their financial support of this study.

References

  1. 1.
    H. Fukuda, A. Kondo, H. Noda, J. Biosci. Bioeng. 92, 405 (2001)CrossRefGoogle Scholar
  2. 2.
    T. Murayama, Inform 5, 1138 (1994)Google Scholar
  3. 3.
    D.L. Klass, Biomass for Renewable Energy, Fuels and Chemicals (Academic, San Diego, 1998)Google Scholar
  4. 4.
    G. Vicente, M. Martinez, J. Aracil, Bioresour. Technol. 92, 297 (2004)CrossRefGoogle Scholar
  5. 5.
    I. Takeshi, N. Yutaka, S. Koichiro, M. Tomoaki, N. Naomichi, J. Biosci. Bioeng. 100, 260 (2005)CrossRefGoogle Scholar
  6. 6.
    A.M. Douette, S.Q. Turn, W. Wang, V.I. Keffer, Energy Fuels 21, 3499 (2007)CrossRefGoogle Scholar
  7. 7.
    G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science 300, 2075 (2003)CrossRefGoogle Scholar
  8. 8.
    R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 418, 964 (2002)CrossRefGoogle Scholar
  9. 9.
    G.A. Deluga, J.R. Salge, L.D. Schmidt, X.E. Verykios, Science 303, 993 (2004)CrossRefGoogle Scholar
  10. 10.
    D.G. Lahr, B.H. Shanks, Ind. Eng. Chem. Res. 42, 5467 (2003)CrossRefGoogle Scholar
  11. 11.
    J. Chamin, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier, Green Chem. 6, 359 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Wang, H. Liu, Catal. Lett. 117, 62 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Alhanash, E.F. Kozhevnikova, I.V. Kozhevnikov, Catal. Lett. 120, 307 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Calzavara, C.J. Dubien, G. Boissonnet, S. Sarrade, Conserv. Manag. 46, 615 (2005)CrossRefGoogle Scholar
  15. 15.
    T. Valliyappan, N.N. Bakhsi, A.K. Dalai, Bioresour. Technol. 99, 4476 (2008)CrossRefGoogle Scholar
  16. 16.
    N. Luo, X. Fu, F. Cao, T. Xiao, P.P. Edwards, Fuel 87, 3483 (2008)CrossRefGoogle Scholar
  17. 17.
    Y. Fernandez, A. Arenillas, M.A. Diez, J.J. Pis, J.A. Menendez, J. Anal. Appl. Pyrolysis 84, 145 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Yuksel, H. Koga, M. Sasaki, M. Goto, J. Renew. Sustain. Energy 1. (2009). doi: 10.1063/1.3156006
  19. 19.
    A. Yuksel, H. Koga, M. Sasaki, M. Goto, Ind. Eng. Chem. Res. 49, 1520 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Rogalinski, K. Liu, T. Albrecht, G. Brunner, J. Supercrit. Fluids 46, 335 (2008)CrossRefGoogle Scholar
  21. 21.
    D.J. Miller, S.B. Hawthorne, Anal. Chem. 70, 1618 (1998)CrossRefGoogle Scholar
  22. 22.
    T. Clifford, Fundamentals of Supercritical Fluids (Oxford University Press, New York, 1998)Google Scholar
  23. 23.
    P.E. Savage, Chem. Rev. 99, 603 (1999)CrossRefGoogle Scholar
  24. 24.
    F.S. Asghari, H. Yoshida, J. Phys. Chem. A. 112, 7402 (2008)CrossRefGoogle Scholar
  25. 25.
    M. Sasaki, Wahyudiono, A. Yuksel, M. Goto, Fuel Process. Technol. (2010). doi: 10.1016/j.fuproc.2010.03.026
  26. 26.
    M. Sasaki, K. Yamamoto, M. Goto, J. Mater. Cycles Waste Manag. 9, 40 (2007)CrossRefGoogle Scholar
  27. 27.
    S. Demirel, K. Lehnert, M. Lucas, P. Claus, J. Appl. Catal. B Environ. 70, 637 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Carettin, P. McMorn, P. Johnston, K. Griffin, G.J. Hutchings, Chem. Commun. 696 (2002)Google Scholar
  29. 29.
    S. Carettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings, Phys. Chem. Chem. Phys. 5, 1329 (2003)CrossRefGoogle Scholar
  30. 30.
    H. Kishida, F. Jin, X. Yan, T. Moriya, H. Enomoto, Carbohydr. Res. 341, 2619 (2006)CrossRefGoogle Scholar
  31. 31.
    G. Prentice, Electrochemical Engineering Principles, 1st edn. (Prentice Hall, NJ, 1991)Google Scholar
  32. 32.
    L. Antropov, Theoretical Electrochemistry, 1st edn. (Mir, Moscow, 1977)Google Scholar
  33. 33.
    J. Gao, X. Wang, Z. Hu, H. Deng, J. Hou, X. Lu, J. Kang, Water Res. 37, 267 (2003)CrossRefGoogle Scholar
  34. 34.
    A.G. Vlyssides, M. Loizidou, P.K. Karlis, A.A. Zorpas, D. Papaioannou, J. Hazard. Mater. B 70, 41 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Applied Chemistry and Biochemistry, Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
  2. 2.Bioelectrics Research CenterKumamoto UniversityKumamotoJapan

Personalised recommendations