Research on Chemical Intermediates

, Volume 36, Issue 6–7, pp 591–602 | Cite as

Preparation and characterization of electrospun LiFePO4/carbon complex improving rate performance at high C-rate

  • Sei-Hyun Lee
  • Min-Jung Jung
  • Ji Sun Im
  • Kyou-Yoon Sheem
  • Young-Seak Lee
Article

Abstract

LiFePO4/carbon complexes were prepared by electrospinning to improve rate performance at high C-rate and their electrochemical properties were investigated to be used as a cathode active material for lithium ion battery. The LiFePO4/carbon complexes were prepared by the electrospinning method. The prepared samples were characterized by SEM, EDS, XRD, TGA, electrometer, and electrochemical analysis. The LiFePO4/carbon complexes prepared have a continuous structure with carbon-coated LiFePO4 and the LiFePO4 in LiFePO4/carbon complex has improved thermal stability from carbon coating. The conductivity of LiFePO4/carbon complex heat-treated at 800 °C is measured as 2.23 × 10−2 S cm−1, which is about 106–107 times more than that of raw LiFePO4. The capacity ratio of coin cell manufactured from raw LiFePO4 is 40%, whereas the capacity ratio of coin cell manufactured from LiFePO4/carbon complex heat-treated at 800 °C is 61% (10 C/0.1 C). The improved rate performance of LiFePO4/carbon complex heat-treated at 800 °C is due to the carbon coating and good electrical connection.

Keywords

High C-rate Rate performance LiFePO4/carbon complex Electrospinning 

References

  1. 1.
    D.Y. Park, D.Y. Park, Y. Lan, Y.S. Lim, M.S. Kim, J. Ind. Eng. Chem. 15, 588 (2009)Google Scholar
  2. 2.
    B.B. Owens, S. Passerini, W.H. Smyrl, Electrochim. Acta 45, 215 (1999)CrossRefGoogle Scholar
  3. 3.
    J.K. Kim, News. Inf. Chem. Eng. 23, 423 (2005)Google Scholar
  4. 4.
    K. Wang, R. Cai, T. Yuan, X. Yu, R. Ran, Z. Shao, Electrochim. Acta 54, 2861 (2009)CrossRefGoogle Scholar
  5. 5.
    Y.Z. Dong, Y.M. Zhao, Y.H. Chen, Z.F. He, Q. Kuang, Mater. Chem. Phys. 115, 245 (2009)CrossRefGoogle Scholar
  6. 6.
    A.K. Padhi, K.S. Nanjudaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)CrossRefGoogle Scholar
  7. 7.
    M. Konarova, I. Taniguchi, Powder Technol. 191, 111 (2009)CrossRefGoogle Scholar
  8. 8.
    Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149, A1184 (2002)CrossRefGoogle Scholar
  9. 9.
    H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid State Lett. 4, A170 (2001)CrossRefGoogle Scholar
  10. 10.
    C.H. Mi, X.B. Zhao, G.S. Cao, J.P. Tu, J. Electrochem. Soc. 152, A483 (2005)CrossRefGoogle Scholar
  11. 11.
    W. Wang, J. Zhang, F. Chen, M. Anpo, D. He, Res. Chem. Intermed. 36, 163 (2010)CrossRefGoogle Scholar
  12. 12.
    J.F. Ni, H.H. Zhou, J.T. Chen, X.X. Zhang, Mater. Lett. 59, 2361 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Abbate, S.M. Lala, L.A. Montoro, J.M. Rosolen, Electrochem. Solid State Lett. 8, A288 (2005)CrossRefGoogle Scholar
  14. 14.
    H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Electrochem. Commun. 8, 1553 (2006)CrossRefGoogle Scholar
  15. 15.
    G. Wang, Y. Cheng, M. Yan, Z. Jiang, J. Solid State Electrochem. 11, 457 (2007)CrossRefGoogle Scholar
  16. 16.
    C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li, Powder Technol. 179, 171 (2007)Google Scholar
  17. 17.
    Y. Huang, K. Park, J.B. Goodenough, J. Electrochem. Soc. 153, A2282 (2006)CrossRefGoogle Scholar
  18. 18.
    M.M. Doeff, J.D. Wilcox, R. Kostecki, G. Lau, J. Power Sources 163, 180 (2006)CrossRefGoogle Scholar
  19. 19.
    X. Li, F. Kang, X. Bai, W. Shen, J. Electrochem. Commun. 9, 663 (2007)CrossRefGoogle Scholar
  20. 20.
    K. Konstantinova, S. Bewlay, G.X. Wang, M. Lindsay, J.Z. Wang, H.K. Liu, S.X. Dou, J.-H. Ahn, Electrochim. Acta 50, 421 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Kuwahara, S. Suzuki, M. Miyayama, The 48th Battery Symposium in Japan (2007), 2A05Google Scholar
  22. 22.
    H. Tannai, S. Koizumi, K. Dokko, H. Nakano and K. Kanamura, The 48th Battery Symposium in Japan (2007), 2A09Google Scholar
  23. 23.
    V. Palomares, A. Goni, I.G. Muro, I. Meatza, M. Bengoechea, O. Miguel, T. Rojo, J. Power Sources 171, 879 (2007)CrossRefGoogle Scholar
  24. 24.
    S.L. Bewlay, K. Konstantinov, G.X. Wang, S.X. Dou, H.K. Liu, Mater. Lett. 581, 788 (2004)Google Scholar
  25. 25.
    J.S. Im, O. Kwon, Y.H. Kim, S.J. Park, Y.S. Lee, Micropor. Mesopor. Mater. 115, 514 (2008)CrossRefGoogle Scholar
  26. 26.
    J.S. Im, S.J. Kim, P.H. Kang, Y.S. Lee, J. Ind. Eng. Chem. 15, 699 (2009)Google Scholar
  27. 27.
    J.S. Im, J.S. Jang, Y.S. Lee, J. Ind. Eng. Chem. 15, 914 (2009)Google Scholar
  28. 28.
    E. Zussman, X. Chen, W. Ding, L. Calabri, D.A. Dikin, J.P. Quintana, R.S. Ruoff, Carbon 43, 2175 (2005)CrossRefGoogle Scholar
  29. 29.
    J. Mittal, H. Konno, M. Inagaki, O.P. Bahl, Carbon 36, 1327 (1998)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, Y. Wang, E. Hosono, K. Wang, H. Zhou, Angew. Chem. Int. Ed. 47, 7461 (2008)CrossRefGoogle Scholar
  31. 31.
    M. Konarova, I. Taniguchi, Mater. Res. Bull. 43, 3305 (2008)CrossRefGoogle Scholar
  32. 32.
    A.A. Salah, A. Mauger, C.M. Julien, F. Gendron, Mater. Sci. Eng.129, 232 (2006)CrossRefGoogle Scholar
  33. 33.
    C.M. Julien, A. Mauger, A. Ait-Salah, M. Massot, F. Gendron, K. Zaghib, Ionics 13, 395 (2007)CrossRefGoogle Scholar
  34. 34.
    Z.L. Zhang, J.C. LU, Y.S. Yang, J. Inorg. Mater.22, 864 (2007)Google Scholar
  35. 35.
    I. Belharouak, C. Johnson, K. Amine, Electrochem. Commun. 7, 983 (2005)CrossRefGoogle Scholar
  36. 36.
    S.H. Park, S.M. Jo, D.Y. Kim, W.S. Lee, B.C. Kim, Synth. Met. 150, 265 (2005)CrossRefGoogle Scholar
  37. 37.
    H.C. Shin, W.I. Cho, H. Jang, Electrochim. Acta 52, 1472 (2006)CrossRefGoogle Scholar
  38. 38.
    S. Wolff, in Carbon Black: Science and Technology, 2nd edn., ed. by J.B. Donnet, R.C. Bansal, M.J. Wang (Marcel Dekker, New York, 1993), p. 271Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sei-Hyun Lee
    • 1
  • Min-Jung Jung
    • 2
  • Ji Sun Im
    • 2
  • Kyou-Yoon Sheem
    • 3
  • Young-Seak Lee
    • 2
  1. 1.Department of Electrical and Electronic EngineeringKorea Polytechnic CollegeDaejeonRepublic of Korea
  2. 2.Department of Applied Chemistry and Biological EngineeringChungnam National UniversityDaejeonRepublic of Korea
  3. 3.Energy Lab., CRD Center, Samsung SDISuwonRepublic of Korea

Personalised recommendations