Research on Chemical Intermediates

, Volume 36, Issue 4, pp 389–401 | Cite as

Stability of hydrogen peroxide during perhydrolysis of carboxylic acids on acidic heterogeneous catalysts

  • Sébastien Leveneur
  • Narendra Kumar
  • Tapio Salmi
  • Dmitry Yu. Murzin
Article

Abstract

This paper describes a study of the stability of hydrogen peroxide in the presence of different aluminosilicate materials, in connection with an investigation of carboxylic acid perhydrolysis. During the reaction, aluminosilicate materials such as H-β zeolites, mesoporous material H-MCM-41 and alumina initiate the decomposition of hydrogen peroxide. The reason of the spontaneous decomposition of H2O2 is related to the partial dealumination of these zeolites. However, in the case of experiments carried out with H-ZSM-5 zeolite catalysts, a slight catalytic effect on the perhydrolysis and no spontaneous decomposition of hydrogen peroxide were noticed. The use of cation exchange resins as catalysts is more kinetically beneficial than H-ZSM-5 zeolite catalysts.

Keywords

Perhydrolysis Aluminosilicate materials Decomposition Hydrogen peroxide 

Notes

Acknowledgements

The financial support from the Åbo Akademi Forskningsinstitut and the Finnish Graduate School in Chemical Engineering (GSCE) are gratefully acknowledged. This work is part of the activities at the Åbo Akademi Process Chemistry Centre (PCC) within the Finnish Centre of Excellence Programme (2006–2011) by the Academy of Finland.

References

  1. 1.
    R. Hage, A. Lienke, Angew. Chem. Int. Ed. 45, 206 (2006)CrossRefGoogle Scholar
  2. 2.
    R. Noyori, Chem. Commun. 14, 1807 (2005)CrossRefGoogle Scholar
  3. 3.
    C.W. Jones, Application of Hydrogen Peroxide and Derivatives, 1st edn. (Royal Society of Chemistry, Cambridge, 1999), pp. 49–53Google Scholar
  4. 4.
    M.G. Clerici, Top. Catal. 13, 373 (2000)CrossRefGoogle Scholar
  5. 5.
    L.V. Dul’neva, A.V. Moskvin, Russ. J. Gen. Chem. 75, 1125 (2005)CrossRefGoogle Scholar
  6. 6.
    X. Zhao, T. Zhang, Y. Zhou, D. Liu, J. Mol, A. Catal, Chemical 271, 246 (2007)Google Scholar
  7. 7.
    S. Leveneur, T. Salmi, D.Yu. Murzin, L. Estel, J. Wärnå, N. Musakka, Ind. Eng. Chem. Res. 47, 656 (2008)CrossRefGoogle Scholar
  8. 8.
    N. Musakka, T. Salmi, J. Wärnå, J. Ahlkvist, M. Piironen, Chem. Eng. Sci. 61, 6918 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Leveneur, T. Salmi, N. Musakka, J. Wärnå, Chem. Eng. Sci. 62, 5007 (2007)CrossRefGoogle Scholar
  10. 10.
    X. Zhao, K. Cheng, J. Hao, D. Liu, J. Mol, A. Catal, Chemical 284, 58 (2008)Google Scholar
  11. 11.
    S. Leveneur, D. Yu. Murzin, T. Salmi, J.-P. Mikkola, N. Kumar, K. Eränen, L. Estel, Chem. Eng. J. 147, 323 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Palani, A. Pandurangan, Catal. Commun. 7, 875 (2006)CrossRefGoogle Scholar
  13. 13.
    G. Prescher, O. Weiberg, H. Waldmann, H. Seifert, International Patent US4088679 (1978)Google Scholar
  14. 14.
    F.P. Greenspan, D.G. MacKellar, Anal. Chem. 20, 1061 (1948)CrossRefGoogle Scholar
  15. 15.
    D. Kubička, N. Kumar, P. Mäki-Arvela, M. Tiitta, V. Niemi, T. Salmi, D.Yu. Murzin, J. Catal. 222, 65 (2004)CrossRefGoogle Scholar
  16. 16.
    P. Mäki-Arvela, N. Kumar, V. Nieminen, R. Sjöholm, T. Salmi, D. Yu Murzin, J. Catal. 225, 155 (2004)CrossRefGoogle Scholar
  17. 17.
    E.M. Sulman, V.V. Alferov, Yu.Yu. Kosivtsov, A.I. Sidorov, O.S. Misnikov, A.E. Afanasiev, N. Kumar, D. Kubicka, J. Agullo, T. Salmi, D.Yu. Murzin, Chem. Eng. J. 134, 162 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Aho, N. Kumar, K. Eränen, T. Salmi, M. Hupa, D.Yu. Murzin, Fuel 87, 2493 (2008)CrossRefGoogle Scholar
  19. 19.
    J.P. Marques, I. Gener, P. Ayrault, J.C. Bordado, J.M. Lopes, F.R. Ribeiro, M. Guisnet, C. R. Chimie 8, 399 (2005)Google Scholar
  20. 20.
    P.K. Sengupta, R.N. Tiwari, S. Bhagat, Chem. Eng. World 32, 89 (1997)Google Scholar
  21. 21.
    G.O. Rocha, R.A.W. Johnstone, B.F. Hemming, P.J.C. Pires, J.P. Sankey, J. Mol, A. Catal, Chemical 186, 127 (2002)Google Scholar
  22. 22.
    A.E.W. Beers, J.A. van Bokhoven, K.M. de Lathouder, F. Kapteijn, J.A. Moulijn, J. Catal. 218, 239 (2003)CrossRefGoogle Scholar
  23. 23.
    D.M. Roberge, H. Hausmann, W.F. Hölderich, Phys. Chem. Chem. Phys. 4, 3128 (2002)CrossRefGoogle Scholar
  24. 24.
    R.L. Hartman, H.S. Fogler, Ind. Eng. Chem. Res. 44, 7738 (2005)CrossRefGoogle Scholar
  25. 25.
    J. De Laat, G.T. Le, B. Legube, Chemosphere 55, 715 (2004)CrossRefGoogle Scholar
  26. 26.
    B. Mani, Ch. Ravi Mohan, V. Sitakara Rao, React. Kinet. Catal. Lett. 13, 277 (1980)CrossRefGoogle Scholar
  27. 27.
    W. Lutz, H. Toufar, R. Kurzhals, M. Suckow, Adsorption 11, 405 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Guisnet, F.R. Ribeiro, Les zéolithes, un nanomonde au service de la catalyse; EDP sciences (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sébastien Leveneur
    • 1
    • 2
  • Narendra Kumar
    • 1
  • Tapio Salmi
    • 1
  • Dmitry Yu. Murzin
    • 1
  1. 1.Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry CentreÅbo Akademi UniversityÅbo/TurkuFinland
  2. 2.LSPC-Laboratoire de Sécurité des Procédés ChimiquesINSA RouenMont-Saint-Aignan CedexFrance

Personalised recommendations