Advertisement

Research on Chemical Intermediates

, Volume 36, Issue 3, pp 289–299 | Cite as

Re-examination of 7,7′-dimethyl-7-germanorbornadiene photocleavage in solution and in organic glasses

  • Margarita V. Kaletina
  • Valeriy V. Korolev
Article
  • 45 Downloads

Abstract

Dimethylgermylene and its Ge=Ge doubly bonded dimer, tetramethyldigermene, have been characterized directly in solution by 308-nm laser flash photolysis in n-hexane solution, as well as 254-nm photolysis in hydrocarbon glasses at t = 77 K. An absorption band maximum of λ max ≈ 430 nm and molar absorption coefficient of ε ≈ 2,700 M−1 cm−1 have been shown to be attributable to low-temperature glasses, while the absorption band maximum of λ max ≈ 480 nm and molar absorption coefficient of ε ≈ 2,400 M−1 cm−1 have been shown to be related to dimethylgermylene in n-hexane solution. The molar absorption coefficient of tetramethyldigermene (λ max ≈ 380 nm) was determined to be ε ≈ 84,000 M−1 cm−1. The germylene is formed via (formal) cheletropic photocycloreversion of 7,7′-dimethylgerma-1,4,5,6-tetraphenyl-2,3-benzo-norbornadiene. Tetramethyldigermene and 1,2,3,4-tetraphenylnaphthalene in the triplet state were formed, together with dimethylgermylene. We attempted to explain the various contradictory interpretations of experimental data existing in the literature on this reaction.

Keywords

7,7′-dimethyl-7-germanorbornadiene Dimethylgermylene Tetramethyldigermene Laser flash photolysis Organic glasses 

Notes

Acknowledgments

The authors would like to thank Dr. I. V. Krylova and Prof. M. P. Egorov (N.D. Zelinsky Institute of Organic Chemistry, the Russian Academy of Sciences) for providing the 7,7′-dimethylgerma-1,4,5,6-tetraphenyl-2,3-benzo-norbornadiene. The authors are also very grateful to Dr. E. M. Glebov and Dr. V. I. Borovkov (Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences).

References

  1. 1.
    W.P. Neumann, Chem. Rev. 91, 311 (1991)CrossRefGoogle Scholar
  2. 2.
    J. Barrau, J. Escudié, J. Satgé, Chem. Rev. 90, 283 (1990)CrossRefGoogle Scholar
  3. 3.
    S. Collins, S. Murakami, J.T. Snow, S. Masamune, Tetrahedron Lett. 26, 1281 (1985)CrossRefGoogle Scholar
  4. 4.
    K. Mochida, J. Ohto, M. Masuda, M. Nanjo, H. Arii, Y. Nakadaira, Chem. Lett. 37, 20 (2008)CrossRefGoogle Scholar
  5. 5.
    S.P. Kolesnikov, M.P. Egorov, A.S. Dvornikov, V.A. Kuz’min, O.M. Nefedov, Organomet. Chem. USSR (Engl. Transl.) 2, 412 (1989)Google Scholar
  6. 6.
    M. Wakasa, I. Yoneda, K. Mochida, J. Organomet. Chem. 366, C1 (1989)CrossRefGoogle Scholar
  7. 7.
    K. Mochida, N. Kano, R. Kato, M. Kotani, S. Yamauchi, M. Wakasa, H. Hayashi, J. Organomet. Chem. 415, 191 (1991)CrossRefGoogle Scholar
  8. 8.
    K. Mochida, H. Ginyama, M. Takahashi, M. Kira, J. Organomet. Chem. 553, 163 (1998)CrossRefGoogle Scholar
  9. 9.
    K. Mochida, S. Tokura, S. Murata, J. Chem. Soc., Chem. Commun. 3, 250 (1992)CrossRefGoogle Scholar
  10. 10.
    K.L. Bobbin, V.M. Maloney, P.P. Gaspar, Organometallics 10, 2772 (1991)CrossRefGoogle Scholar
  11. 11.
    K. Mochida, I. Yoneda, M. Wakasa, J. Organomet. Chem. 399, 53 (1990)CrossRefGoogle Scholar
  12. 12.
    S. Tomoda, M. Shimoda, Y. Takeuchi, Y. Kajii, K. Obi, I. Tanaka, K. Honda, J. Chem. Soc., Chem. Commun. 14, 910 (1988)Google Scholar
  13. 13.
    W. Ando, T. Tsumuraya, A. Sekiguchi, Chem. Lett. 2, 317 (1987)CrossRefGoogle Scholar
  14. 14.
    W. Ando, H. Itoh, T. Tsumuraya, Organometallics 8, 2759 (1989)CrossRefGoogle Scholar
  15. 15.
    H. Sakurai, K. Sakamoto, M. Kira, Chem. Lett. 13, 1379 (1984)CrossRefGoogle Scholar
  16. 16.
    J. Barrau, D.L. Bean, K.M. Welsh, R. West, J. Michl, Organometallics 8, 2606 (1989)CrossRefGoogle Scholar
  17. 17.
    S. Tomoda, M. Shimoda, Y. Takeuchi, Nippon Kagaku Kaishi 1466 (1989)Google Scholar
  18. 18.
    K. Mochida, M. Wakasa, Y. Nakadaira, Y. Sakaguchi, H. Hayashi, Organometallics 7, 1869 (1988)CrossRefGoogle Scholar
  19. 19.
    K. Mochida, M. Wakasa, Y. Sakaguchi, H. Hayashi, Bull. Chem. Soc. Jpn. 64, 1889 (1991)CrossRefGoogle Scholar
  20. 20.
    K. Mochida, H. Kikkawa, Y. Nakadaira, J. Organomet. Chem. 412, 9 (1991)CrossRefGoogle Scholar
  21. 21.
    K. Mochida, S. Tokura, Bull. Chem. Soc. Jpn. 65, 1642 (1992)CrossRefGoogle Scholar
  22. 22.
    H. Görner, M. Lehnig, M. Weisbebeck, J. Photochem. Photobiol. A 94, 157 (1996)CrossRefGoogle Scholar
  23. 23.
    W.J. Leigh, C.R. Harrington, I. Vargas-Baca, J. Am. Chem. Soc. 126, 16105 (2004)CrossRefGoogle Scholar
  24. 24.
    W.J. Leigh, F. Lollmahomed, C.R. Harrington, Organometallics 25, 2055 (2006)CrossRefGoogle Scholar
  25. 25.
    W.J. Leigh, F. Lollmahomed, C.R. Harrington, J.M. McDonald, Organometallics 25, 5424 (2006)CrossRefGoogle Scholar
  26. 26.
    M.V. Kaletina, V.F. Plyusnin, V.P. Grivin, V.V. Korolev, T.V. Leshina, J. Phys. Chem. A 110, 13341 (2006)CrossRefGoogle Scholar
  27. 27.
    M.B. Taraban, O.S. Volkova, V.F. Plyusnin, Y.V. Ivanov, T.V. Leshina, M.P. Egorov, O.M. Nefedov, T. Kayamori, K. Mochida, J. Organomet. Chem. 601, 324 (2000)CrossRefGoogle Scholar
  28. 28.
    T.V. Leshina, O.S. Volkova, M.B. Taraban, Russ. Chem. Bull., Int. Ed. 50, 1916 (2001)CrossRefGoogle Scholar
  29. 29.
    M.P. Egorov, M.B. Ezhova, S.P. Kolesnikov, O.M. Nefedov, M.B. Taraban, A.I. Kruppa, T.V. Leshina, Mendeleev Commun. 1, 143 (1991)CrossRefGoogle Scholar
  30. 30.
    W.P. Neumann, M. Schriewer, Tetrahedron Lett. 21, 3273 (1980)CrossRefGoogle Scholar
  31. 31.
    M. Schriewer, W.P. Neumann, J. Am. Chem. Soc. 105, 897 (1983)CrossRefGoogle Scholar
  32. 32.
    P. Bleckmann, R. Minkwitz, W.P. Neumann, M. Schriewer, M. Thibud, B. Watta, Tetrahedron Lett 25, 2467 (1984)CrossRefGoogle Scholar
  33. 33.
    J. Kocher, M. Lehnig, W.P. Neumann, Organometallics 7, 1201 (1988)CrossRefGoogle Scholar
  34. 34.
    A. Weissberger, E.S. Proskauer (eds.), Technique of organic chemistry, Volume VII, Organic Solvent, Physical Properties and Methods of Purification, on the basis of the First Edition. (Completely revised Second Edition by J. A. Riddick and E. E. Toops, Jr., Commercial Solvents Corporation, Terre Haute, Indiana. Interscience Publishers New York 1) (1955)Google Scholar
  35. 35.
    V.P. Grivin, V.F. Plyusnin, I.V. Khmelinski, N.M. Bazhin, M. Mitewa, P.R. Bontchev, J. Photochem. Photobiol. A 51, 371 (1990)CrossRefGoogle Scholar
  36. 36.
    V.V. Korolev, V.F. Plyusnin, N.M. Bazhin, Zh. Fiz. Khim. 49, 244 (1975)Google Scholar
  37. 37.
    W.J. Leigh, L.A. Huck, E. Held, C.R. Harrington, Silicon Chem. 3, 139 (2007)CrossRefGoogle Scholar
  38. 38.
    K. Mochida, T. Kayamori, M. Wakasa, H. Hayashi, M.P. Egorov, Organometallics 19, 3379 (2000)CrossRefGoogle Scholar
  39. 39.
    J.S. Brinen, M.K. Orloff, J. Chem. Phys. 51, 527 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Chemical Kinetics and CombustionSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations