Research on Chemical Intermediates

, Volume 36, Issue 1, pp 103–113 | Cite as

Synthesis of TiO2 using different hydrolysis catalysts and doped with Zn for efficient degradation of aqueous phase pollutants under UV light

  • O. Vázquez-Cuchillo
  • A. Cruz-López
  • L. M. Bautista-Carrillo
  • A. Bautista-Hernández
  • L. M. Torres Martínez
  • S. Wohn Lee
Article

Abstract

In this work, various TiO2 and TiO2 doped with 0.1, 1.0, and 5.0 mol% of Zn were prepared by the sol–gel method varying different hydrolysis catalysts (HNO3, OHAc, H3PO4) in order to be used as photocatalysts for environmental applications. The X-ray diffraction results showed that the different TiO2 samples have presented the anatase as main phase, However, the acid nature has played an important role in the superficial and optical properties. The N-physisortion analysis has revealed that the specific surface area of calcined TiO2 samples prepared using H3PO4, HOAc, and HNO3 was 245, 100, and 90 m2 g−1, respectively, while the spectroscopic UV analysis, the band gap energy has shifted by 3.3–3.0 eV. In order to improve the optical properties of TiO2, the last preparation was doped with different zinc concentrations. The result showed that, as the Zn concentration increase by 0.1–5.0 mol%, the surface area increased from 90 to 120 m2 g−1. Nevertheless, the Eg returned from 3.0 to 3.32. The SEM analyses have not revealed important morphological changes between no doped and doped materials. The catalytic activity of the composite was studied on the photocatalytic degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) and the activity results showed that small Zn concentrations decrease the t1/2 in 28 min.

Keywords

TiO2 2,4-Dichlorophenoxyacetic acid Sol–gel method 

References

  1. 1.
    K. Iino, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo, Design and development of second-generation titanium oxide photocatalyst materials operating under visible light irradiation by applying advanced ion-engineering techniques. Curr. Appl. Phys. 6, 982 (2005)CrossRefGoogle Scholar
  2. 2.
    F.-L. Toma, G. Bertrand, S.O. Chaw, D. Klein, H. Liao, C. Meunier, C. Coddet, Microstructure and photocatalytic properties of nanostructured TiO2 and TiO2–Al coatings elaborated by HVOF spraying for the nitrogen oxides removal. Mater. Sci. Eng. A 417, 56 (2006)CrossRefGoogle Scholar
  3. 3.
    G. Corro, C. Odilon Vazquez, J.L.G. Fierro, Strong improvement on CH4 oxidation over Pt/γ-Al2O3 catalysts. Catal. Commun. 6, 287 (2005)CrossRefGoogle Scholar
  4. 4.
    L.M. Torres-Martínez, A. Cruz-López, L.L. Garza Tovar, K. Del Angel, I. Juárez Ramírez, Synthesis of sol–gel Na2ZrXTi6−XO13 (0 < x < 1) materials and their performance in photocatalytic degradation of organics dyes. Res. Chem. Intermed. 34, 403 (2008)CrossRefGoogle Scholar
  5. 5.
    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 4698 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Li, Z. Ma, J. Zhang, J. Liu, Photocatalytic activity of TiO2 and ZnO in the presence of manganese dioxide. Catal. Commun. 9, 1482 (2008)CrossRefGoogle Scholar
  7. 7.
    Y. Kim, J. Lee, H. Jeong, Y. Lee, M.-H. Um, K.M. Jeong, M.-K. Yeo, M. Kang, Methyl orange removal over Zn-incorporated TiO2 photo-catalyst. J. Ind. Eng. Chem. 14, 396 (2008)Google Scholar
  8. 8.
    K. Oyoshi, N. Sumi, I. Umezu, R. Souda, A. Yamazaki, H. Haneda, T. Mitsuhashi, Nucl. Instrum. Methods Phys. Res. B 168, 221 (2000)CrossRefGoogle Scholar
  9. 9.
    A.R. Phani, M. Passacanando, S. Santucci, Synthesis of nanocrystalline ZnTiO3 perovskite thin films by sol–gel process assisted by microwave irradiation. J. Phys. Chem. Solids 68, 317 (2007)CrossRefGoogle Scholar
  10. 10.
    M.R. Hoffmann, S.T. Martin, W. Choi, D. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  11. 11.
    A. Fujishima, T. Rao, D. Tryk, Titanium dioxide photocatalys. J. Photochem. Photobiol. C, 1, 1 (2001)Google Scholar
  12. 12.
    Di. Li, H. Haneda, Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51, 129 (2003)CrossRefGoogle Scholar
  13. 13.
    D.L. Liao, B.Q. Liao, Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. J. Photochem. Photobiol. A: Chem. 187, 363 (2007)CrossRefGoogle Scholar
  14. 14.
    X. Liu, Y. Xu, Z. Zhong, Y. Fu, Y. Deng, Preparation of Zn/TiO2 powder and its photocatalytic performance for oxidation of P-nitrophenol. Nucl. Sci. Tech. 18, 59 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Zheng, X. Xing, J. Deng, L. Li, J. Zhao, L. Qiao, C. Fang, Synthesis and Characterization of (Zn, Mn) TiO2 by modified sol–gel route. J. Alloys Compd. 456, 453 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Escobedo Morales, E. Sanchez Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fís. 53, 18 (2007)Google Scholar
  17. 17.
    B.A. Morales, O. Novaro, T. López, E. Sánchez, R. Gómez, Effect of hydrolysis catalyst on the Ti deficiency and crystallite size of sol–gel-TiO2 crystalline phases. J. Mater. Res. 10, 1788 (1995)CrossRefGoogle Scholar
  18. 18.
    R. Chang, Química (McGraw Hill, 2007), p. 128Google Scholar
  19. 19.
    J. Marugan, P. Christensen, T. Egerton, H. Purnama, Influence of the synthesis ph of the properties and activity of sol–gel TiO2 photocatalysts. Int. J. Photoenergy. doi:10.1155/2008/759561
  20. 20.
    J. Yinhuan, Y. Hemgbo, S. Yuming, L. Hui, L. Lixu, C. Kangmin, W. Yuji, Appl. Surf. Sci. 253, 9277 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • O. Vázquez-Cuchillo
    • 1
  • A. Cruz-López
    • 1
  • L. M. Bautista-Carrillo
    • 1
  • A. Bautista-Hernández
    • 2
  • L. M. Torres Martínez
    • 1
  • S. Wohn Lee
    • 3
  1. 1.Departmento de Ecomateriales y Energía, Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico
  2. 2.Facultad de IngenieríaUniversidad Autónoma de PueblaPueblaMéxico
  3. 3.Department of Materials EngineeringSun Moon UniversityAsanSouth Korea

Personalised recommendations