Photochromic behavior of tetrathienylethene in condensed systems—attempts to control 1,2-dyotropic rearrangement of the closed isomer

  • Hiroshi Ikeda
  • Akinori Kawabe
  • Azusa Sakai
  • Hayato Namai
  • Kazuhiko Mizuno


Tetrakis(2-methyl-5-methylthiothien-3-yl)ethene (1) exhibits incomplete photochromism in the powder state, KBr pellet, the amorphous state and a polystyrene film. In contrast, 1 in the single crystalline state does not show any photoreactivity. This chromic system involves three possible photon-modes involving the starting open isomer 1, the corresponding closed isomer trans- 2 and the rearranged isomer trans- 3. Unfortunately, efforts to control the interconversions between these isomers, especially the rearrangement of trans- 2 to trans- 3, have not been fruitful. A possible mechanism for photocyclization of 1 to form trans- 2 is also discussed on the basis of the results of density functional theory calculations together with that for the 1,2-dyotropic rearrangement of trans- 2 to give trans- 3.


Photochemistry Photochromism Reaction mechanism Thiophene  



We gratefully acknowledge financial support by a Grant-in-Aid for Scientific Research on Priority Area “New Frontiers in Photochromism” (No. 471) and the Cooperation for Innovative Technology and Advanced Research in Evolutional Area (CITY AREA) program from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. We also thank Dr. Haruyuki Okamura (Osaka Prefecture University) for his technical assistance and Prof. Takeaki Iwamoto (Tohoku University) for his valuable discussion.


  1. 1.
    H. Ikeda, A. Sakai, H. Namai, A. Kawabe, K. Mizuno, Synthesis, X-ray crystallographic analysis, and theoretical structure analysis of tetrathienylethenes designed for photo- and electrochromism. Tetrahedron Lett. 48, 8338–8342 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Ikeda, A. Sakai, A. Kawabe, H. Namai, K. Mizuno, Photochromic properties of tetrakis (2-methylthien-3-yl)ethene and its tetrakis(methylthio) derivative. Tetrahedron Lett. 49, 4972–4976 (2008)CrossRefGoogle Scholar
  3. 3.
    M.T. Reetz, Dyotropic rearrangements, a new class of orbital-symmetry controlled reactions. Type I. Angew. Chem. Int. Ed. Eng. 11, 129–130 (1972)CrossRefGoogle Scholar
  4. 4.
    M.T. Reetz, Dyotropic rearrangements, a new class of orbital-symmetry controlled reactions. Type II. Angew. Chem. Int. Ed. Eng. 11, 130–131 (1972)CrossRefGoogle Scholar
  5. 5.
    H. Dürr, H. Bouas-Laurent, Photochromism—Molecules and Systems (Elsevier, Amsterdam, 2003)Google Scholar
  6. 6.
    S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Irie, Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000)CrossRefGoogle Scholar
  8. 8.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, Revision A.11.4 (Gaussian, Inc., Pittsburgh, PA, 1998)Google Scholar
  9. 9.
    WinMOPAC 3.9 (Fujitsu Ltd., Tokyo, Japan, 2004)Google Scholar
  10. 10.
    K. Matsuda, M. Irie, Diarylethene as a photoswitching unit. J. Photochem. Photobiol. C 5, 169–182 (2004)CrossRefGoogle Scholar
  11. 11.
    K. Matsuda, M. Irie, Recent development of 6π—electrocyclic photochromic system. Chem. Lett. 35, 1204–1209 (2006)CrossRefGoogle Scholar
  12. 12.
    K. Higashiguchi, K. Matsuda, S. Kobatake, T. Yamada, T. Kawai, M. Irie, Fatigue mechanism of photochromic 1,2-bis(2, 5-dimethyl-3-thienyl)perfluorocyclopentane. Bull. Chem. Soc. Jpn 73, 2389–2394 (2000)CrossRefGoogle Scholar
  13. 13.
    M.A. Sierra, I. Fernandez, M.J. Mancheno, M. Gomez-Gallego, M.R. Torres, F.P. Cossio, A. Arrieta, B. Lecea, A. Poveda, J. Jimenez-Barbero, Light-induced aminocarbene to imine dyotropic rearrangement in a chromium(0) center: an unprecedented reaction pathway. J. Am. Chem. Soc. 125, 9572–9573 (2003)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, K.N. Houk, S. Lin, S.J. Danishefsky, Mechanism of cis-enamide formation from N-(α-silyl)allyl amides: synthetic potential of stepwise dyotropic rearrangements. J. Am. Chem. Soc. 125, 5111–5114 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media BV 2009

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversitySakai, OsakaJapan
  2. 2.The Research Institute for Molecular Electronic Devices (RIMED)Osaka Prefecture UniversitySakai, OsakaJapan
  3. 3.Department of Chemistry, Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations