Research on Chemical Intermediates

, Volume 35, Issue 4, pp 453–463 | Cite as

Electron–ion recombination in radiation tracks in liquid argon: a computer simulation study



A simulation method is proposed to model electron–ion recombination in radiation tracks in liquid argon at 87 K. The method is applied to calculate the electron escape probability in clusters of up to 20 pairs of electrons and cations that represent a fragment of the track. The results reproduce the basic features of the track recombination in liquid argon observed in experiment.


Liquid argon Electron–ion recombination Computer simulation 



This work was supported by Grant No. N204 080 32/2232 from the Ministry of Science and Higher Education of Poland.


  1. 1.
    S. Kubota, A. Nakamoto, T. Takahashi, T. Hamada, E. Shibamura, M. Miyajima, K. Masuda, T. Doke, Recombination luminescence in liquid argon and in liquid xenon. Phys. Rev. B 17, 2762–2765 (1978)CrossRefGoogle Scholar
  2. 2.
    S.S.-S. Huang, G.R. Freeman, Electron transport in gaseous and liquid argon: effects of density and temperature. Phys. Rev. A 24, 714–724 (1981)CrossRefGoogle Scholar
  3. 3.
    R.T. Scalettar, P.J. Doe, H.-J. Mahler, H.H. Chen, Critical test of geminate recombination in liquid argon. Phys. Rev. A 25, 2419–2422 (1982)CrossRefGoogle Scholar
  4. 4.
    J. Thomas, D.A. Imel, Recombination of electron-ion pairs in liquid argon and liquid xenon. Phys. Rev. A 36, 614–616 (1987)CrossRefGoogle Scholar
  5. 5.
    E. Aprile, W.H.-M. Ku, J. Park, H. Schwartz, Energy resolution studies of liquid argon ionization detectors. Nucl. Instrum. Methods A 261, 519–526 (1987)CrossRefGoogle Scholar
  6. 6.
    K. Shinsaka, M. Codama, T. Srithanratana, M. Yamamoto, Y. Hatano, Electron-ion recombination rate constants in gaseous, liquid, and solid argon. J. Chem. Phys. 88, 7529–7536 (1988)CrossRefGoogle Scholar
  7. 7.
    S. Amoruso et al., Study of electron recombination in liquid argon with the ICARUS TPC. Nucl. Instrum. Methods A 523, 275–286 (2004)CrossRefGoogle Scholar
  8. 8.
    V.M. Atrazhev, I.T. Iakubov, Hot electrons in non-polar liquids. J. Phys. C 14, 5139–5150 (1981)CrossRefGoogle Scholar
  9. 9.
    T. Doke, A. Hitachi, J. Kikuchi, K. Masuda, S. Tamada, A. Mozumder, E. Shibamura, T. Takahashi, Estimation of the fraction of electrons escaping from recombination in the ionization of liquid argon with relativistic electrons and heavy ions. Chem. Phys. Lett. 115, 164–166 (1985)CrossRefGoogle Scholar
  10. 10.
    W.G. Burns, A. Mozumder, Theoretical analysis of free-ion yield in liquid argon under low-let irradiation. Chem. Phys. Lett. 142, 381–384 (1987)CrossRefGoogle Scholar
  11. 11.
    R.A. Holroyd, W.F. Schmidt, Transport of electrons in nonpolar fluids. Annu. Rev. Phys. Chem. 40, 439–468 (1989) (references therein)Google Scholar
  12. 12.
    A. Mozumder, Free-ion yield in liquid argon at low-LET. Chem. Phys. Lett. 238, 143–148 (1995)CrossRefGoogle Scholar
  13. 13.
    M. Wojcik, M. Tachiya, Electron transport and electron–ion recombination in liquid argon: simulation based on the Cohen–Lekner theory. Chem. Phys. Lett. 363, 381–388 (2002)CrossRefGoogle Scholar
  14. 14.
    E. Aprile, A.E. Bolotnikov, A.I. Bolozdynya, T. Doke, Noble Gas Detectors (Wiley-VCH, Weinheim, 2006)CrossRefGoogle Scholar
  15. 15.
    A. Mozumder, Fundamentals of Radiation Chemistry (Academic, San Diego, 1999)Google Scholar
  16. 16.
    M. Wojcik, M. Tachiya, Electron thermalization and electron–ion recombination in liquid argon. Chem. Phys. Lett. 379, 20–27 (2003)CrossRefGoogle Scholar
  17. 17.
    G. Jaffe, Theorie der Ionisation in Kolonnen. Ann. Phys. 42, 303–344 (1913)CrossRefGoogle Scholar
  18. 18.
    H.A. Kramers, On a modification of Jaffé’s theory of column-ionization. Physica 18, 665–675 (1952)CrossRefGoogle Scholar
  19. 19.
    R.C. Munoz, J.B. Cumming, R.A. Holroyd, Ionization of liquid hydrocarbons and tetramethylsilane by 241Am alpha particles. J. Chem. Phys. 85, 1104–1115 (1986)CrossRefGoogle Scholar
  20. 20.
    M. Tachiya, Breakdown of the Onsager theory of geminate ion recombination. J. Chem. Phys. 89, 6929–6935 (1988)CrossRefGoogle Scholar
  21. 21.
    M. Wojcik, M. Tachiya, S. Tagawa, Y. Hatano, in Charged Particle and Photon Interactions with Matter, ed. by A. Mozumder, Y. Hatano (Marcel Dekker, New York, 2003)Google Scholar
  22. 22.
    M.H. Cohen, J. Lekner, Theory of hot electrons in gases, liquids, and solids. Phys. Rev. 158, 305–309 (1967)CrossRefGoogle Scholar
  23. 23.
    M. Wojcik, M. Tachiya, Electron-ion recombination in dense gaseous and liquid argon: effects due to argon cation clusters allow to explain the experimental data. Chem. Phys. Lett. 390, 475–480 (2004)CrossRefGoogle Scholar
  24. 24.
    N. Gee, S.S.-S. Huang, T. Wada, G.R. Freeman, Comparison of transition from low to high density transport behavior for ions and neutral molecules in simple fluids. J. Chem. Phys. 77, 1411–1416 (1982)CrossRefGoogle Scholar
  25. 25.
    W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76, 637–649 (1982)CrossRefGoogle Scholar
  26. 26.
    D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic, San Diego, 2002)Google Scholar
  27. 27.
    M. Miyajima, T. Takahashi, S. Konno, T. Hamada, S. Kubota, H. Shibamura, T. Doke, Average energy expended per ion pair in liquid argon. Phys. Rev. A 9, 1438–1443 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media BV 2009

Authors and Affiliations

  1. 1.Institute of Applied Radiation ChemistryTechnical University of LodzLodzPoland

Personalised recommendations