Research on Chemical Intermediates

, Volume 35, Issue 2, pp 187–196 | Cite as

Strontium tantalum oxides with perovskite-type structure: synthesis and dye photodecomposition properties

  • V. Rodríguez-González
  • X. L. García-Montelongo
  • L. L. Garza-Tovar
  • Soo Wohn Lee
  • L. M. Torres-Martínez
Article

Abstract

In this work the preparation and photocatalytic properties of strontium tantalum oxides with perovskite-type structures are presented. The perovskite-type oxides were prepared by the sol–gel method and annealed at 800, 900 and 1,000 °C for 36 h. Before and after annealing the solids were characterized by XRD, N2 adsorption (BET), UV–visible (diffuse reflectance), FTIR, TGA–DTA, and SEM-EDS techniques. The X-ray diffraction patterns of the samples showed the coexistence of three strontium tantalate oxides, Sr2Ta2O7, SrTa4O11, and Sr5Ta4O15, the relative amounts of which were highly dependent on the annealing temperature. It has been proposed that the photoactivity of the oxides in the decomposition of crystal violet dye could be related to the proportion of the Sr2Ta2O7 phase in the annealed samples.

Keywords

Perovskite-type structure Sol–gel perovskite synthesis Crystal violet degradation Strontium tantalum oxide perovskite-type structure 

References

  1. 1.
    K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, A. Kudo, The relationship between photocatalytic activity and crystal structure in strontium tantalates. J. Catal. 232, 102–107 (2005)CrossRefGoogle Scholar
  2. 2.
    A. Kudo, H. Kato, S. Nakagawa, Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures––factors affecting the photocatalytic activity. J. Phys. Chem. B 104, 571–575 (2000)CrossRefGoogle Scholar
  3. 3.
    K. Okuwada, S. Nakamura, H. Nozawa, Crystal growth of layered perovskite Sr2Nb2O7 and Sr2Ta2O7 film by the Sol–gel technique. J. Mater. Res. 14, 855–860 (1999)CrossRefGoogle Scholar
  4. 4.
    Y. Yang, Y. Sun, Y. Jiang, Structure and photocatalytic property of perovskite and perovskite-related compounds. Mater. Chem. Phys. 96, 234–239 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Hur, T. Kim, S. Hwang, J. Choy, Influences of A- and B-site cations on the physicochemical properties of perovskite-structured A(In1/3Nb1/3B1/3)O3 (A = Sr, Ba; B = Sn, Pb) photocatalysts. J. Photochem. Photobiol. A: Chem. 183, 176–181 (2006)CrossRefGoogle Scholar
  6. 6.
    J. Yin, Z. Zou, J. Ye, Photophysical and photocatalytic properties of MIn0.5Nb0.5O3(M = Ca, Sr and Ba). J. Phys. Chem. B 107, 61–65 (2003)Google Scholar
  7. 7.
    H. Kato, H. Kobayashi, A. Kudo, Role of Ag+ ions for band structures and photocatalytic properties of AgMO3 (M = Ta and Nb) with the perovskite structure. J. Phys. Chem. B 106, 12441–12447 (2002)CrossRefGoogle Scholar
  8. 8.
    H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nano-structure. J. Am. Chem. Soc. 125, 3082–3089 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Kohno, S. Ogura, K. Sato, Y. Inoue, Reduction and oxidation of BaTi4O9 with a pentagonal prism tunnel structure––effects on radical formation upon UV irradiation and on the activity of RuO2/BaTi4O9 photocatalyst for water decomposition. J. Chem. Soc. Faraday Trans. 93, 2433–2437 (1997)CrossRefGoogle Scholar
  10. 10.
    M. Kohno, S. Ogura, K. Sato, Y. Inoue, Properties of photocatalysts with tunnel structures: formation of a surface lattice O radical by the UV irradiation of BaTi4O9 with a pentagonal-prism tunnel structure. Chem. Phys. Lett. 267, 72–76 (1997)CrossRefGoogle Scholar
  11. 11.
    K. Rajeshwar, Hydrogen generation at irradiated oxide semiconductor–solution interfaces. J. Appl. Electrochem. 37, 765–787 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Fujishima, X. Zhang, D.A. Tryk, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Inter. J. Hydrogen Energy 32, 2664–2672 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Song, H. Jiang, T. Liu, X. Liu, G. Meng, Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+1 (A = Li, Na and K). Mater. Res. Bull. 42, 334–344 (2007)CrossRefGoogle Scholar
  14. 14.
    L.M. Torres-Martínez, L.L. Garza-Tovar, M.E. Meza-de la Rosa, A. Martínez-de la Cruz, A. Cruz-López, Photocatalytic activity of doped NaTaO3 and NaNbO3: (Y, La, Nd, Sm) sol–gel on degradation of rhodamine B by UV irradiation, Mater. Sci. Forum. 544–545 , 103–106 (2007)Google Scholar
  15. 15.
    W.D. Wang, F.Q. Huang, C.M. Liu, X.P. Lin, J.L. Shi, Preparation, electronic structure and photocatalytic activity of the In2TiO5 photocatalyst. Mater. Sci. Eng. B 139, 74–80 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Yoshino, M. Kakihana, W.S. Cho, H. Kato, A. Kudo, Polymerizable complex synthesis of pure Sr2NbxTa2-xO7 solid solutions with high photocatalytic activities for water decomposition into H2 and O2. Chem. Mater. 14, 3369–3376 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Kato, A. Kudo, Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 105, 4285–4292 (2001)CrossRefGoogle Scholar
  18. 18.
    H. Kato, A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal. Today 78, 561–569 (2003)CrossRefGoogle Scholar
  19. 19.
    H.W. Eng, P.W. Barnes, B.M. Auer, P.M. Woodward, Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J. Solid State Chem. 175, 94–109 (2003)CrossRefGoogle Scholar
  20. 20.
    C.C. Chen, F.D. Mai, K.T. Chen, C.W. Wu, C.S. Lu, Photocatalyzed N-de-methylation and degradation of crystal violet in titania dispersions under UV irradiation. Dyes and Pigments 75, 434–442 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • V. Rodríguez-González
    • 1
  • X. L. García-Montelongo
    • 1
  • L. L. Garza-Tovar
    • 1
  • Soo Wohn Lee
    • 2
  • L. M. Torres-Martínez
    • 1
  1. 1.Departamento de Ecomateriales y EnergíaUniversidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Instituto de Ingeniería CivilSan Nicolás de los GarzaMéxico
  2. 2.Department of Materials EngineeringSun Moon UniversityAsan ChungnamSouth Korea

Personalised recommendations