Advertisement

Reviews in Fish Biology and Fisheries

, Volume 29, Issue 4, pp 837–859 | Cite as

The genetics and genomics of marine fish invasions: a global review

  • Stefania ChiesaEmail author
  • Ernesto Azzurro
  • Giacomo Bernardi
Reviews

Abstract

We present a comprehensive review of the available global literature on the genetics and genomics of marine fish invasions. Overall this review provides data from 66 species belonging to 39 families, collected from 80 published studies on both WoS (Web of Science) and Scopus databases. We found that studies on alien fishes focused on specific geographic areas, mainly the Mediterranean region. Furthermore, most studies restricted their approach to describe patterns of cryptic diversity and/or the development of novel markers, whilst the genetic structure of introduced populations and the genetic mechanisms driving the invasion processes were mostly neglected. The majority of studies on marine fishes reveal similar genetic diversity levels in both native and introduced ranges, suggesting massive or multiple introductions. Indeed, cases of introduced populations showing evidence of bottlenecks were rare. Genetic arrangements are not explained by taxonomic group or reproductive strategy but recent studies reveal rapid evolutionary changes associated with invasive lineages, opening new grounds to investigate mechanisms of adaptation in the natural environment. Finally, the potential of marine fish invasions as a model to test evolutionary responses to rapid environmental changes is further discussed.

Graphic abstract

Keywords

Alien species Biological invasions Marine fishes Genetics Genomics 

Notes

Acknowledgements

The Authors would like to thank the two referees who revised the manuscript, the Editor in chief Prof. Jan Strugnell and the assigned Editor Prof. Stefano Mariani for their useful suggestions to improve the paper. We also thank a professional mother tongue who provided the English revision.

Supplementary material

11160_2019_9586_MOESM1_ESM.pdf (178 kb)
Supplementary material 1 (PDF 178 kb)

References

  1. Adrian-Kalchhauser I, Svensson O, Kutschera VE, Rosenblad MA, Pippel M, Winkler S, Schloissnig S, Blomberg A, Burkhardt-Holm P (2017) The mitochondrial genome sequences of the round goby and the sand goby reveal patterns of recent evolution in gobiid fish. BMC Genom 18:177Google Scholar
  2. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30Google Scholar
  3. Azzurro E, Tuset VM, Lombarte A, Maynou F, Simberloff D, Rodríguez-Pérez A, Solé RV (2014) External morphology explains the success of biological invasions. Ecol Lett 17:1455–1463PubMedGoogle Scholar
  4. Bañón R, Arias A, Arana D, Cuesta JA (2017) Identification of a non-native Cynoscion species (Perciformes: Sciaenidae) from the Gulf of Cádiz (southwestern Spain) and data on its current status. Sci Mar 81:19–26Google Scholar
  5. Bariche M, Torres M, Smith C, Sayar N, Azzurro E, Baker R, Bernardi G (2015) Red Sea fishes in the Mediterranean Sea: a preliminary investigation of a biological invasion using DNA barcoding. J Biogeogr 42:2363–2373Google Scholar
  6. Bariche M, Kleitou P, Kalogirou S, Bernardi G (2017) Genetics reveal the identity and origin of the lionfish invasion in the Mediterranean Sea. Sci Rep.  https://doi.org/10.1038/s41598-017-07326-1 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barrett SCH (2015) Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol 24:1927–1941PubMedGoogle Scholar
  8. Béarez P, Gabriel S, Dettai A (2016) Unambiguous identification of the non-indigenous species Cynoscion regalis (Sciaenidae) from Portugal. Cybium 40:245–248Google Scholar
  9. Bernardi G, Golani D, Azzurro E (2010) The genetics of Lessepsian bioinvasions. In: Golani D, Applebaum-Golani B (eds) Fish invasions of the Mediterranean Sea: change and renewal. Pensoft, Sofia, pp 71–84Google Scholar
  10. Bernardi G, Azzurro E, Golani D, Miller MR (2016) Genomic signatures of rapid adaptive evolution in the bluespotted cornetfish, a Mediterranean Lessepsian invader. Mol Ecol 25:3384–3396PubMedGoogle Scholar
  11. Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E (2018) Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 24:335–341PubMedGoogle Scholar
  12. Betancur RR, Hines A, Acero PA, Orti G, Wilbur AE, Freshwater W (2011) Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography. J Biogeogr 38:1281–1293Google Scholar
  13. Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297PubMedGoogle Scholar
  14. Bourne SD, Hudson J, Holman LE, Rius M (2018) Marine Invasion genomics: revealing ecological and evolutionary consequences of Biological Invasions. In: Rajora OM, Oleksiak MF (eds) Population genomics: marine organisms. Springer, BerlinGoogle Scholar
  15. Bronnenhüber JE, Dufour BA, Higgs DM, Heath DD (2011) Dispersal strategies, secondary range expansion and invasion genetics of the nonindigenous round goby, Neogobius melanostomus, in Great Lakes tributaries. Mol Ecol 20:1845–1859PubMedGoogle Scholar
  16. Brown JE, Stepien CA (2008) Ancient divisions, recent expansions: phylogeography and population genetics of the round goby Apollonia melanostoma. Mol Ecol 17:2598–2615PubMedGoogle Scholar
  17. Brown JE, Stepien CA (2009) Invasion genetics of the Eurasian round goby in North America: tracing sources and spread patterns. Mol Ecol 18:64–79PubMedGoogle Scholar
  18. Butterfield JSS, Díaz-Ferguson W, Sulliman BR, Saunders JW, Buddo D, Mignucci-Giannoni AA, Searle L, Allen AC, Hunter ME (2015) Wide-ranging phylogeographic structure of invasive red lionfish in the Western Atlantic and Greater Caribbean. Mar Biol 162:773–781Google Scholar
  19. Chiesa S, Filonzi L, Vaghi M, Papa R, Nonnis Marzano F (2013) Molecular barcoding of an atypical cyprinid population assessed by Cytochrome b gene sequencing. Zool Sci 30:408–413PubMedGoogle Scholar
  20. Chiesa S, Filonzi L, Ferrari C, Vaghi M, Bilò F, Piccinini A, Zuccon G, Wilson RC, Ulheim J, Nonnis Marzano F (2016) Combinations of distinct molecular markers allow to genetically characterize marble trout (Salmo marmoratus) breeders and stocks suitable for reintroduction plans. Fish Res 176:55–64Google Scholar
  21. Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA (2015) Biological invasions, climate change and genomics. Evol Appl 8:23–46PubMedGoogle Scholar
  22. Cock JM, Tessmar-Raible K, Boyen C et al (2010) Introduction to marine genomics. Springer, BerlinGoogle Scholar
  23. Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24:1999–2017PubMedGoogle Scholar
  24. Comtet T, Sandionigi A, Viard F, Casiraghi M (2015) DNA (meta)barcoding of biological invasions: a powerful tool to elucidate invasion processes and help managing aliens. Biol Invasions 17:905–922Google Scholar
  25. Courtenay WR (1995) Marine fish introductions in south-eastern Florida. Am Fish Soc Introduced Fish Sect Newsl 14:2–3Google Scholar
  26. Darling JA (2015) Genetic studies of aquatic biological invasions: closing the gap between research and management. Biol Invasions 17:951–971Google Scholar
  27. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME, Bernatchez L (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895PubMedGoogle Scholar
  28. Del Río-Portilla MA, Vargas-Peralta CE, Machkour-M’Rabet S, Hénaut Y, García-De-Léon FJ (2014) Lionfish, Pterois volitans Linnaeus 1758, the complete mitochondrial DNA of an invasive species. Mitochondr DNA.  https://doi.org/10.3109/19401736.2014.953075 CrossRefGoogle Scholar
  29. Diamant A (1998) Red drum Sciaenops ocellatus (Sciaenidae), a recent introduction to Mediterranean mariculture, is susceptible to Myxidium leei (Myxosporea). Aquaculture 162:33–39Google Scholar
  30. Dillon AK, Stepien CA (2001) Genetic and biogeographic relationships of the invasive round (Neogobius melanostomus) and Tubenose (Proterorhinus marmoratus) gobies in the Great Lakes versus Eurasian populations. J Great Lakes Res 27:267–280Google Scholar
  31. Dray L, Neuhof M, Diamant A, Huchon D (2014) The complete mitochondrial genome of the devil firefish Pterois miles (Bennett, 1828) (Scorpaenidae). Mitochondr DNA.  https://doi.org/10.3109/19401736.2014.945565 CrossRefGoogle Scholar
  32. Edelist D, Rilov G, Golani D, Carlton JT, Spanier E (2013) Restructuring the Sea: profound shifts in the world’s most invaded marine ecosystem. Divers Distrib 19:69–77Google Scholar
  33. Ferreira CEL, Luiz OJ, Floeter SR, Lucena MB, Barbosa MC, Rocha CR, Rocha LA (2015) First record of invasive lionfish (Pterois volitans) for the Brazilian Coast. PLoS ONE 10:1–5Google Scholar
  34. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425PubMedPubMedCentralGoogle Scholar
  35. Frankham R, Ballou JD, Briscoe DA (2009) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  36. Gaither MR, Bowen BW, Toonen RJ, Planes S, Messmer V, Earle J, Robertson DR (2010a) Genetic consequences of introducing two allopatric lineages of Bluestripe Snapper (Lutjanus kasmira) to Hawaii. Mol Ecol 19:1107–1121PubMedGoogle Scholar
  37. Gaither MR, Toonen RJ, Robertson DR, Planes S, Bowen BW (2010b) Genetic evaluation of marine biogeographic barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J Biogeogr 37:133–147Google Scholar
  38. Gaither MR, Bowen BW, Bordenave T, Rocha LA, Newman SJ, Gomez JA, van Herwerden L, Craig MT (2011) Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates pleistocene isolation across the Indo-Pacific Barrier with contemporary overlap in the coral triangle. BMC Evol Biol 11:189PubMedPubMedCentralGoogle Scholar
  39. Gaither MR, Toonen RJ, Bowen BW (2012) Coming out of the starting blocks: extended lag time rearranges genetic diversity in introduced marine fishes of Hawaii. Proc R Soc B 279:3948–3957PubMedGoogle Scholar
  40. Gaither MR, Bowen BW, Toonen RJ (2013) Population structure in the native range predicts the spread of introduced marine species. Proc R Soc B 280(1760):20130409PubMedGoogle Scholar
  41. Golani D, Ritte U (1999) Genetic relationship in goat fishes (Mullidae: Perciformes) of the Red Sea and the Mediterranean, with remarks on Suez Canal migrants. Sci Mar 63:129–135Google Scholar
  42. Golani D, Azzurro E, Corsini-Foka M, Falautano M, Andaloro F, Bernardi F (2007) Genetic bottlenecks and successful biological invasions: the case of a recent Lessepsian migrant. Biol Lett 3:541–545PubMedPubMedCentralGoogle Scholar
  43. Gomes P, Vieira AR, Oliveira R, Silva H, Martins R, Carneiro M (2017) First record of Cynoscion regalis (Pisces, Sciaenidae) in Portuguese continental waters. J Fish Biol 90:2470–2474PubMedGoogle Scholar
  44. Guzmán-Méndez IA, Rivera-Madrid R, Díaz-Jaimes P, García-Rivas MC, Aguilar-Espinosa M, Arias-González JE (2017a) First genetically confirmed record of the invasive devil firefish Pterois miles (Bennett, 1828) in the Mexican Caribbean. BIR 6:99–103Google Scholar
  45. Guzmán-Méndez IA, Rivera-Madrid R, Díaz-Jaimes P, Aguilar-Espinosa M, Arias-González JE (2017b) Applying an easy molecular method to differentiate Pterois volitans from Pterois miles by RFLPs. Conserv Genet Resour 9:493–497Google Scholar
  46. Harms-Tuohy CA, Schizas NV, Appeldoorn RS (2016) Use of DNA metabarcoding for stomach content analysis in the invasive lionfish Pterois volitans in Puerto Rico. Mar Ecol-Prog Ser 558:181–191Google Scholar
  47. Harrison E, Love CN, Jones KL et al (2013) Isolation and characterization of 18 novel, polymorphic microsatellite markers from the Mayan cichlid (Cichlasoma urophthalmus). Conserv Gen Res 5:703–705Google Scholar
  48. Hedrick PW (2011) Genetics of populations, 4th edn. Jones and Bartlett, SudburyGoogle Scholar
  49. Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807Google Scholar
  50. Jackson AM, Tenggardjaja K, Perez G, Azzurro E, Golani D, Bernardi G (2015) Phylogeography of the bluespotted cornetfish, Fistularia commersonii: a predictor of bioinvasion success? Mar Ecol 36:887–896Google Scholar
  51. Janáč M, Bryja J, Ondračková M, Mendel J, Jurajda P (2017) Genetic structure of three invasive gobiid species along the Danube-Rhine invasion corridor: similar distributions, different histories. Aquat Invasions 12:551–564Google Scholar
  52. Karahan A, Douek J, Paz G, Stern N, Kideys AE, Shaish L, Goren M, Rinkevich B (2017) Employing DNA barcoding as taxonomy and conservation tools for fish species censuses at the southeastern Mediterranean, a hot-spot area for biological invasion. J Nat Conserv 36:1–9Google Scholar
  53. Kasapidis P, Peristeraki P, Tserpes G, Magoulas A (2007) First record of the Lessepsian migrant Lagocephalus sceleratus (Gmelin 1789) (Osteichthyes: Tetraodontidae) in the Cretan Sea (Aegean, Greece). Aquat Invasions 2:71–73Google Scholar
  54. Kimmerling N, Zuqert O, Amitai G et al (2018) Quantitative species-level ecology of reef fish larvae via metabarcoding. Nat Ecol Evol 2:306–316PubMedGoogle Scholar
  55. Kitchens LL, Paris CB, Vaz AC, Ditty JG, Cornic M, Cowan JH Jr, Rooker JR (2017) Occurrence of invasive lionfish (Pterois volitans) larvae in the northern Gulf of Mexico: characterization of dispersal pathways and spawning areas. Biol Invasions 19:1971–1979Google Scholar
  56. Knebelsberger T, Thiel R (2014) Identification of gobies (Teleostei: Perciformes: Gobiidae) from the North and Baltic Seas combining morphological analysis and DNA barcoding. Zool J Linn Soc-Lond 172:831–845Google Scholar
  57. Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181PubMedGoogle Scholar
  58. Lal MM, Southgate PC, Jerry DR, Zenger KR (2016) Fishing for divergence in a sea of connectivity: the utility of ddRADseq genotyping in a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera. Mar Genom 25:57–68Google Scholar
  59. Leppäkoski E, Mihnea PE (1996) Enclosed seas under man-induced change: a comparison between the Baltic and Black Seas. Ambio 25:380–389Google Scholar
  60. Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biol Invasions 2:151–163Google Scholar
  61. Loftus WF (1987) Possible establishment of the Mayan cichlid, Cichlasoma urophthalmus (Günther) (Pisces: Cichlidae), in Everglades National Park, Florida. Fla Sci 50:1–6Google Scholar
  62. Meraner A, Gandolfi A (2018) Application of genetics in aquatic species conservation: the case example marble trout. Wasserwirtschaft 108:35–40Google Scholar
  63. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097PubMedPubMedCentralGoogle Scholar
  64. Mombaerts M, Verreycken H, Volckaert FAM, Huyse T (2014) The invasive round goby Neogobius melanostomus and tubenose goby Proterorhinus semilunaris: two introduction routes into Belgium. Aquat Invasions 9:305–314Google Scholar
  65. Morris JA, Akins JL (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fish 86:389–398Google Scholar
  66. Nathan LR, Jerde CL, Budny ML, Mahon AR (2015) The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade. Conserv Biol 29:430–439PubMedGoogle Scholar
  67. Neilson ME, Stepien CA (2009) Escape from the Ponto-Caspian: evolution and biogeography of an endemic goby species flock (Benthophilinae: Gobiidae: Teleostei). Mol Phylogenet Evol 52:84–102PubMedGoogle Scholar
  68. Oda DK, Parrish JD (1982) Ecology of commercial snappers and groupers introduced to Hawaiian reefs. In: Proceedings of the 4th international coral reef symposium, vol 1. Manila, Philippines: International Society for Reef Studies. University of the Philippines, Manila. 18–22 May 1981,pp 59–67Google Scholar
  69. Pérez-Portela R, Bumford A, Coffman B, Wedelich S, Davenport M, Fogg A, Swenarton MK, Coleman F, Johnston MA, Crawford DL, Oleksiak MF (2018) Genetic homogeneity of the invasive lionfish across the Northwestern Atlantic and the Gulf of Mexico based on Single nucleotide polymorphisms. Sci Rep 8:5062PubMedPubMedCentralGoogle Scholar
  70. Piccolo JJ (2016) Conservation genomics: coming to a salmonid near you. J Fish Biol 89:2735–2740PubMedGoogle Scholar
  71. Por FD (1971) One hundred years of suez canal-a century of Lessepsian migration: retrospect and viewpoints. Syst Biol 20:138–159Google Scholar
  72. Puritz JB, Hollenbeck CM, Gold JR (2014) dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organism. PeerJ 2:e431PubMedPubMedCentralGoogle Scholar
  73. Randall JE (1987) Introductions of marine fishes to the Hawaiian Islands. Bull Mar Sci 41:490–502Google Scholar
  74. Randall JE, Kanayama RK (1972) Hawaiian fish immigrants. Sea Front 18:144–153Google Scholar
  75. Reitzel AM, Herrera S, Layden MJ et al (2013) Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol 22:2953–2970PubMedPubMedCentralGoogle Scholar
  76. Rius M, Turon X, Bernardi G, Volckaert F, Viard F (2015a) Marine invasion genetics: from spatial and temporal patterns to evolutionary outcomes. Biol Invasions 17:869–885Google Scholar
  77. Rius M, Bourne S, Hornsby HG, Chapman MA (2015b) Applications of next-generation sequencing to the study of biological invasions. Curr Zool 61:488–504Google Scholar
  78. Rohfritsch A, Bierne N, Boudry P et al (2013) Population genomics shed light on the demographic and adaptive histories of European invasion in the Pacific oyster, Crassostrea gigas. Evol Appl 6:1064–1078PubMedPubMedCentralGoogle Scholar
  79. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464PubMedGoogle Scholar
  80. Sax DF, Stachowicz JJ, Gaines SD (2005) Species invasions: insights into ecology, evolution and biogeography. Sinauer Associates IncorporatedGoogle Scholar
  81. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Gen 19:R227–R240PubMedGoogle Scholar
  82. Schultz TF, Fitzpatrick CF, Freshwater DW, Morris JA Jr (2013) Characterization of 18 polymorphic microsatellite loci from invasive lionfish (Pterois volitans and P. miles). Conserv Genet Resour 5:599–601Google Scholar
  83. Sherman CDH, Lotterhos KE, Richardson MF, Tepolt CK, Rollins LA, Palumbi SR, Miller AD (2016) What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol 163:198Google Scholar
  84. Shi G, Jin X, Zhao S, Xu T, Wang X (2012) Complete mitochondrial genome of Trypauchen vagina (Perciformes, Gobioidei). Mitochondr DNA 3:151–153Google Scholar
  85. Snyder ME, Stepien CA (2017) Genetic patterns across an invasion’s history: a test of change vs. stasis for the Eurasian round goby in North America. Mol Ecol 26:1075–1090PubMedGoogle Scholar
  86. Splendiani A, Ruggeri P, Giovannotti M, Pesaresi S, Occhipinti G, Fioravanti T, Lorenzoni M, Cerioni PN, Barucchi VC, Caputo V (2016) Alien brown trout invasion of the Italian peninsula: the role of geological, climate and anthropogenic factors. Biol Invasions 18:2029–2044Google Scholar
  87. Stapley J, Reger J, Feulner PG et al (2010) Adaptation genomics: the next generation. Tree 25:705–712PubMedGoogle Scholar
  88. Stepien CA, Neilson ME (2013) What’s in a name? Taxonomy and nomenclature of invasive gobies in the Great Lakes and beyond. J Great Lakes Res 39:555–559Google Scholar
  89. Stepien CA, Tumeo MA (2006) Invasion genetics of Ponto-Caspian gobies in the Great Lakes: a “cryptic” species, absence of founder effects, and comparative risk analysis. Biol Invasions 8:61–78Google Scholar
  90. Stern N, Paz G, Yudkovsky Y, Lubinevsky H, Rinkevich B (2017) The arrival of a second ‘Lessepsian sprinter’? The first record of the red cornetfish Fistularia petimba in the Eastern Mediterranean. Mediterr Mar Sci 18:524–528Google Scholar
  91. Tepolt CK (2015) Adaptation in marine invasion: a genetic perspective. Biol Invasions 17:887–903Google Scholar
  92. Tikochinski Y, Friling M, Harush N, Lizarovich R, Manor N, Horsky A, Appelbaum-Golani B, Golani D (2013a) Molecular comparison of geographically extreme populations of fish species of wide Indo-Pacific distribution. Isr J Ecol Evol 59:197–200Google Scholar
  93. Tikochinski Y, Shainin I, Hyams Y, Motro U, Golani D (2013b) Genetic evidence for an undescribed species previously considered as Sillago sihama from the northern Red Sea. Mar Biol Res 9:309–315Google Scholar
  94. Tikochinski Y, Russell B, Hyams Y, Motro U, Golani D (2016) Molecular analysis of the recently described lizardfish Saurida lessepsianus (Synodontidae) from the Red Sea and the Mediterranean, with remarks on its phylogeny and genetic bottleneck effect. Mar Biol Res 12:419–425Google Scholar
  95. Toledo-Hernández C, Vélez-Zuazo X, Ruiz-Diaz CP, Patricio AR, Mège P, Navarro M, Sabat AM, Betancur RR, Papa R (2014) Population ecology and genetics of the invasive lionfish in Puerto Rico. Aquat Invasions 9:227–237Google Scholar
  96. Tsadok R, Rubin-Blum M, Shemesh E, Tchernov D (2015) On the occurrence and identification of Abudefduf saxatilis (Linnaeus, 1758) in the easternmost Mediterranean Sea. Aquat Invasions 10:101–105Google Scholar
  97. Tuney I (2016) Molecular identification of puffer fish Lagocephalus sceleratus (Gmelin, 1789) and Lagocephalus spadiceus (Richardson, 1845) from Eastern Mediterranean, Turkey. Fresenius Environ Bull 25:1428–1436Google Scholar
  98. Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R, García-Rivas MdC (2012) Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS ONE 7:e36636PubMedPubMedCentralGoogle Scholar
  99. Viard F, David P, Darling JA (2016) Marine invasions enter the genomic era: three lessons from the past, and the way forward. Curr Zool 62:629–642PubMedPubMedCentralGoogle Scholar
  100. Wellband KW, Heath DD (2017) Plasticity in gene transcription explains the differential performance of two invasive fish species. Evol Appl 10:563–576PubMedPubMedCentralGoogle Scholar
  101. Wetterstrand KA (2014) DNA sequencing costs: data from the NHGRI genome sequencing program. http://www.genome.gov/sequencingcosts. Accessed 16 Dec 2014
  102. Willis SC, Hollenbeck CM, Puritz JB, Gold JR, Portnoy DS (2017) Haplotyping RAD loci: an efficient method to filter paralogs and account for physical linkage. Mol Ecol Res 17:955–965Google Scholar
  103. Zander CD (2011) Morphological adaption to special environments of gobies. In: Patzner RA, Van Tassell JL, Kovacevic M, Kapoor BG (eds) The biology of gobies. Science Publishers, New York, pp 345–366Google Scholar
  104. Zhao L, Wang Y, Song N, Gao T, Zhang Z (2016) The complete mitochondrial genome of Saurida undosquamis (Aulopiformes: Synodontidae). Mitochondr DNA 27:1024–1025Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Environmental Protection and ResearchISPRARomeItaly
  2. 2.Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceMestre VeniceItaly
  3. 3.Department of SciencesUniversity of “Roma Tre”RomeItaly
  4. 4.CNR-IRBIM, National Research Council, Institute of Biological Resources and Marine BiotechnologiesAnconaItaly
  5. 5.Zoological Station A. DohrnNaplesItaly
  6. 6.Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations