Reviews in Fish Biology and Fisheries

, Volume 29, Issue 2, pp 465–486 | Cite as

Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens prepupae in the diet

  • Genciana TerovaEmail author
  • Simona Rimoldi
  • Chiara Ascione
  • Elisabetta Gini
  • Chiara Ceccotti
  • Laura Gasco
Original Research


Insects have been identified as an economically sustainable high-value, and safe protein-rich alternative to fishmeal in compound feeds for farmed fish. Accordingly, the present study aimed to evaluate the effects of substitution of fishmeal with insect meal from Hermetia illucens in the diet of rainbow trout (Oncorhynchus mykiss), on fish growth performance, and gut microbiota composition. For this purpose, three diets, with increasing levels of insect prepupae meal inclusion (10%, 20% and 30%) in partial substitution of fishmeal and a control diet without insect meal were tested in a 12-weeks feeding trial. Fish growth and feed conversion ratio were evaluated. The Illumina MiSeq platform for high-throughput amplicon sequencing of 16S rRNA gene and QIIME pipeline were used to analyse and characterize the whole microbiome associated to aquafeeds, and fish gut. The number of reads taxonomically classified according to the Greengenes database was 1,140,534. We identified 450 OTUs at 97% identity in trout fecal samples; 62 OTUs constituted the core gut microbiota. Actinobacteria, Firmicutes and Proteobacteria represented the dominant phyla in both experimental groups. Among them, the abundance of Actinobacteria and Proteobacteria was significantly influenced by including insect meal in the diet. In summary, our findings clearly indicated that insect meal positively modifies fish gut microbiota, increasing its richness and diversity and in particular, increasing the amount of beneficial lactic acid-and butyrate-producing bacteria, which contribute to the global health of the host. In addition, based on our present and previous studies, we believe that the prebiotic effect of insect meal is principally due to fermentable chitin.


Aquaculture Gut microbiota Hermetia illucens Insect meal Metagenomics Rainbow trout 



This work was funded by Fondazione Cariplo Grant No. 2014-0550 (project acronym, InBioProFeed) and by the AGER project Fine Feed for Fish (4F), Rif. No. 2016-01-01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

11160_2019_9558_MOESM1_ESM.xlsx (39 kb)
Supplementary material 1 (XLSX 39 kb)
11160_2019_9558_MOESM2_ESM.xlsx (65 kb)
Supplementary material 2 (XLSX 65 kb)
11160_2019_9558_MOESM3_ESM.xlsx (13 kb)
Supplementary material 3 (XLSX 12 kb)
11160_2019_9558_MOESM4_ESM.docx (897 kb)
Supplementary material 4 (DOCX 896 kb)
11160_2019_9558_MOESM5_ESM.docx (23 kb)
Supplementary material 5 (DOCX 23 kb)


  1. AOAC International (2000) Official methods of analysis of AOAC International, 16th edn. Association of Official Analytical Chemists, GaithersburgGoogle Scholar
  2. AOAC International (2003) Official methods of analysis of AOAC International, 17th edn. Association of Official Analytical Chemists, GaithersburgGoogle Scholar
  3. Apper E, Weissman D, Respondek F, Guyonvarch A, Baron F, Boisot P, Rodiles A, Merrifield DL (2016) Hydrolysed wheat gluten as part of a diet based on animal and plant proteins supports good growth performance of Asian seabass (Lates calcarifer), without impairing intestinal morphology or microbiota. Aquaculture 453:40–48. CrossRefGoogle Scholar
  4. Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringo E (2012) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Acquaculture 326:1–8. CrossRefGoogle Scholar
  5. Barragan-Fonseca KB, Dicke M, van Loon JJA (2017) Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—a review. J Insects Food Feed 3(2):105–120. CrossRefGoogle Scholar
  6. Barroso FG, de Haro C, Sanchez-Muros MJ, Venegas E, Martinez-Sanchez A, Perez-Ban C (2014) The potential of various insect species for use as food for fish. Aquaculture 422–423:193–201. CrossRefGoogle Scholar
  7. Beier S, Bertilsson S (2013) Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol 4:149. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Belghit I, Liland NS, Waagbø R, Biancarosa I, Pelusio N, Li Y, Krogdahl Å, Lock E-J (2018) Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 491:72–81. CrossRefGoogle Scholar
  9. Borrelli L, Coretti L, Dipineto L, Bovera F, Menna F, Chiariotti L, Nizza A, Lembo F, Fioretti A (2017) Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci Rep 7:16269. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bruni L, Pastorelli R, Viti C, Gasco L, Parisi G (2018) Characterization of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 487:56–63. CrossRefGoogle Scholar
  11. Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17(12):1519–1528. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Met 7:335–336. CrossRefGoogle Scholar
  13. Cassidy ES, West PC, Gerber JS, Foley JA (2013) Redefining agricultural yields: from tonnes to people nourished per hectare. Environ Res Lett 8:034015. CrossRefGoogle Scholar
  14. Clements KD, Angert ER, Montgomery WL, Choat JH (2014) Intestinal microbiota in fishes: what’s known and what’s not. Mol Ecol 23:1891–1898. CrossRefPubMedGoogle Scholar
  15. Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG, Hill JE (2012) Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 350–353:134–142. CrossRefGoogle Scholar
  16. Egerton S, Culloty S, Whooley J, Stanton C, Ross RP (2018) The gut microbiota of marine fish. Front Microbiol 9:873. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Esquivel-Elizondo S, Ilhan ZE, Garcia-Peña EI, Krajmalnik-Brown R (2017) Insights into butyrate production in a controlled fermentation system via gene predictions. mSystems 2:e00051-17. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Estruch G, Collado MC, Peñaranda DS, Tomás Vidal A, Jover Cerdá M et al (2015) Impact of fishmeal replacement in diets for gilthead sea bream (Sparus aurata) on the gastrointestinal microbiota determined by pyrosequencing the 16S rRNA Gene. PLoS ONE 10(8):e0136389. CrossRefPubMedPubMedCentralGoogle Scholar
  19. FAO (2018) The state of world fisheries and aquaculture-meeting the sustainable development goals. Rome. Accessed 4 Sept 2018
  20. Finke MD (2007) Estimate of chitin in raw whole insects. Zool Biol 26:105–115CrossRefGoogle Scholar
  21. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  22. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND et al (2011) Solutions for a cultivated planet. Nature 478:337–342. CrossRefGoogle Scholar
  23. Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227. CrossRefGoogle Scholar
  24. Fry JP, Mailloux NA, Love DC, Milli MC, Cao L (2018) Feed conversion efficiency in aquaculture: do we measure it correctly? Environ Res Lett 13:024017. CrossRefGoogle Scholar
  25. Gajardo K, Jaramillo-Torres A, Kortner TM, Merrifield DL, Tinsley J, Bakke AM, Krogdahl Å (2017) Alternative protein sources in the diet modulate microbiota and functionality in the distal intestine of Atlantic salmon (Salmo salar). Appl Environ Microbiol 83(5):e02615±16. CrossRefGoogle Scholar
  26. Gasco L, Gai F, Maricchiolo G, Genovese L, Ragonese S, Bottari T, Caruso G (2018a) Fishmeal alternative protein sources for aquaculture feeds. In: Gasco et al (eds) Feeds for the aquaculture sector—current situation and alternative sources. Springer briefs in molecular science. Springer, Cham, pp 1–20.
  27. Gasco L, Finke M, van Huis A (2018b) Can diets containing insects promote animal health? J Insects Food Feed 4(1):1–4. CrossRefGoogle Scholar
  28. Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G et al (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579. CrossRefGoogle Scholar
  29. Ghanbari M, Kneifel W, Domig KJ (2015) A new view of the fish gut microbiome: advances from next generation sequencing. Aquaculture 448:464–475. CrossRefGoogle Scholar
  30. Givens CE, Ransom B, Bano N, Hollibaugh JT (2014) Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar Ecol Prog Ser 518:209–223. CrossRefGoogle Scholar
  31. Goycoolea F, Arguelles-Monal W, Peniche C, Higuera-Ciapara I (2000) Chitin and chitosan. In: Doxastakis G, Kiosseoglou V (eds) Novel macromolecules in food systems. Developments in food science, vol 41. Elsevier, Amsterdam, pp 265–308CrossRefGoogle Scholar
  32. Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119. CrossRefPubMedGoogle Scholar
  34. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeon Elect 4(1):9Google Scholar
  35. Hardy RW (1999) Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview. Aquaculture 177:217–230. CrossRefGoogle Scholar
  36. Hartviksen M, Vecino JLG, Ringø E, Bakke AM, Wadsworth S, Krogdahl Å, Ruohonen K, Kettunen A (2014) Alternative dietary protein sources for Atlantic salmon (Salmo salar L.) effect on intestinal microbiota, intestinal and liver histology and growth. Aquac Nutr 20:381–398. CrossRefGoogle Scholar
  37. Heikkinen J, Vielma J, Kemilainen O, Tiirola M, Eskelinen P, Kiuru T, Navia-Paldanius D, Wright A (2006) Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 261:259–268. CrossRefGoogle Scholar
  38. Henry M, Gasco L, Piccolo G, Fountoulaki E (2015) Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203:1–22. CrossRefGoogle Scholar
  39. Ingerslev H-C, Strube ML, von Gersdorff Jørgensen L, Dalsgaard I, Boye M, Madsen L (2014a) Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish Shell Immunol 40:624–633. CrossRefGoogle Scholar
  40. Ingerslev H-C, von Gersdorff Jørgensen L, Strube ML, Larsen N, Dalsgaard I, Boye M, Madsen L (2014b) The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 424–425:24–34. CrossRefGoogle Scholar
  41. Karlsen O, Amlund H, Berg A, Olsen RE (2017) The effect of dietary chitin on growth and nutrient digestibility in farmed Atlantic cod, Atlantic salmon and Atlantic halibut. Aquac Res 48:123–133. CrossRefGoogle Scholar
  42. Kim SK, Bhatnagar I, Kang KH (2012) Development of marine probiotics: prospects and approach. Adv Food Nutr Res 65:353–362. CrossRefPubMedGoogle Scholar
  43. Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A, Schulz C (2012) When a turbot catches a fly: evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364–365:345–352. CrossRefGoogle Scholar
  44. Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344. CrossRefGoogle Scholar
  45. Li J, Ni J, Li J, Wang C, Li X, Wu S, Zhang T, Yu Y, Yan Q (2014) Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J Appl Microbiol 117:1750–1760. CrossRefPubMedGoogle Scholar
  46. Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol 5:207. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lock E, Arsiwalla T, Waagbo R (2016) Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquacult Nutr 22(6):1202–1213. CrossRefGoogle Scholar
  48. Lock E-J, Biancarosa I, Gasco L (2018) Insects as raw materials in compound feed for aquaculture. In: Halloran A et al (eds) Edible insects in sustainable food systems. Springer, Berlin, pp 263–276. CrossRefGoogle Scholar
  49. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Magalhaes R, Sanchez-Lopez A, Leal R (2017) Black soldier fly (Hermetia illucens L.) prepupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax L.). Acquaculture 476:79–85. CrossRefGoogle Scholar
  52. Makkar HPS, Tran G, Heuze V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33. CrossRefGoogle Scholar
  53. Maslowski KM, Mackay CR (2010) Diet, gut microbiota and immune responses. Nat Immnunol 12:5–9. CrossRefGoogle Scholar
  54. Mátis G, Neogrády Z, Csikó G, Kulcsár A, Kenéz Á, Huber K (2013) Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken—a randomized controlled trial. Nutr Met 10:12. CrossRefGoogle Scholar
  55. Meneguz M, Schiavone A, Gai F, Dama A, Lussiana C, Renna M, Gasco L (2018) Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J Sci Food Agric 98:5776. CrossRefPubMedGoogle Scholar
  56. Nawaz A, Javaid AB, Irshad S, Hoseinifar SH, Xionga H (2018) The functionality of prebiotics as immunostimulant: evidences from trials on terrestrial and aquatic animals. Fish Shell Immunol 76:272–278. CrossRefGoogle Scholar
  57. Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573. CrossRefGoogle Scholar
  58. Naylor LR, Goldburg J, Primavera HJ, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Naylor LR, Hardy RW, Bureau DP, Chiu A, Elliot M, Farrel AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci 106(36):15103–15110. CrossRefPubMedGoogle Scholar
  60. Nielsen S, Walburn JW, Vergés A, Thomas T, Egan S (2017) Microbiome patterns across the gastrointestinal tract of the rabbitfish Siganus fuscescens. PeerJ 5:e3317. CrossRefPubMedPubMedCentralGoogle Scholar
  61. NRC (National Research Council) (2011) Nutrient requirements of fish and shrimp. The National Academies Press, Washington, DC, p 376. CrossRefGoogle Scholar
  62. Oonincx DGAB, de Boer IJM (2012) Environmental impact of the production of mealworms as a protein source for humans—a life cycle assessment. PLoS ONE 7:e51145. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Oonincx DGAB, van Itterbeeck J, Heetkamp MJW, van den Brand H, van Loon JJA, van Huis A (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 5:el14445. CrossRefGoogle Scholar
  64. Penn MH, Bendiksen EÅ, Campbell P, Krogdahl Å (2011) High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture 310:267–273. CrossRefGoogle Scholar
  65. Pryde SE, Duncan SH, Hold GL, Stewart CS, Harry JF (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139. CrossRefPubMedGoogle Scholar
  66. Qin C, Zhang Y, Liu W, Xu L, Yang Y, Zhou Z (2014) Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂. Fish Shell Immunol 40:267–274. CrossRefGoogle Scholar
  67. Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C, Malfatto V, Prearo M, Capucchio MT, Biasato I, Biasibetti E (2017) Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss) diets. J Anim Sci Biotechnol 8:57. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rimoldi S, Finzi G, Ceccotti C, Girardello R, Grimaldi A, Ascione C, Terova G (2016) Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal. Fisher Aquatic Sci 19:40. CrossRefGoogle Scholar
  69. Rimoldi S, Terova G, Ascione C, Giannico R, Brambilla F (2018a) Next generation sequencing for intestinal microbiota characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources. PLoS ONE 13(3):e0193652. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rimoldi S, Gliozheni E, Ascione C, Gini E, Terova G (2018b) Effect of a specific composition of short-and medium-chain fatty acid 1-Monoglycerideson growth performances and gut microbiota of gilthead sea bream (Sparus aurata). PeerJ 6:e5355. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. CrossRefGoogle Scholar
  72. Ringø E, Gatesoupe FJ (1998) Lactic acid bacteria in fish: a review. Acquaculture 160:177–203. CrossRefGoogle Scholar
  73. Ringø E, Zhou Z, Olsen RE, Song SK (2012) Use of chitin and krill in aquaculture—the effect on gut microbiota and the immune system: a review. Aquac Nutr 18:117–131. CrossRefGoogle Scholar
  74. Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl Å et al (2016) Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac Nutr 22:219–282. CrossRefGoogle Scholar
  75. Sánchez-Muros M-J, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27. CrossRefGoogle Scholar
  76. Santha NC, Ackman RG (1990) Nervonic acid versus tricosanoic acid as internal standards in quantitative gas chromatographic analyses of fish oil longer-chain n-3 polyunsaturated fatty acid methylesters. J Chromatogr 533:1–10.
  77. Santigosa E, Garcia-Meilan I, Valentin JM, Pérez-Sánchez J, Médale F, Kaushik S, Gallardo MA (2011) Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture 317:146–154. CrossRefGoogle Scholar
  78. Schader C, Muller A, El-Hage Scialabba N, Hecht J, Isensee A, Erb KH et al (2015) Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J R Soc Interf 12(113):20150891. CrossRefGoogle Scholar
  79. Sekirov I, Russell SL, Caetano L, Antunes M, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904. CrossRefPubMedGoogle Scholar
  80. Skrivanova E, Marounek M, Dlouha G, Kanka J (2005) Susceptibility of Clostridium perfringens to C–C fatty acids. Lett Appl Microbiol 41:77–81. CrossRefPubMedGoogle Scholar
  81. Skrivanova E, Marounek MVB, Brezina P (2006) Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet Med Czech 51:81–88. Accessed 10 Sept 2018
  82. Spranghers T, Michiels J, Vrancx J, Ovyn A, Eeckhoutc M, De Clercq P, De Smeta S (2018) Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim Feed Sci Technol 235:33–42. CrossRefGoogle Scholar
  83. Stadtlander T, Stamer A, Buser A, Wohlfahrt J, Leiber F, Sandrock C (2017) Hermetia illucens meal as fish meal replacement for rainbow trout on farm. J Insects Food Feed 3(3):165–175. CrossRefGoogle Scholar
  84. Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158. CrossRefGoogle Scholar
  85. Tacon AGJ, Metian M (2009) Fishing for aquaculture: non-food use of small pelagic forage fish—a global perspective. Rev Fisher Sci 17:305–317. CrossRefGoogle Scholar
  86. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9(8):e105592. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Terova G, Díaz N, Rimoldi S, Ceccotti C, Gliozheni E, Piferrer F (2016) Effects of sodium butyrate treatment on histone modifications and the expression of genes related to epigenetic regulatory mechanisms and immune response in european sea bass (Dicentrarchus Labrax) fed a plant-based diet. PLoS ONE 11(7):e0160332. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Torrecillas S, Mompel D, Caballero MJ, Montero D, Merrifield D et al (2016) Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture 468:386–398. CrossRefGoogle Scholar
  89. Udayangani RMC, Dananjaya SHS, Nikapitiya C, Heo G-J, Lee J, De Zoysa M (2017) Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. Fish Shell Immunol 66:173–184. CrossRefGoogle Scholar
  90. van Huis A, Van Itterbeeck J, Klunder H, Vantomme P (2013) EDIBLE INSECTS. Future prospects for food and feed security. Accessed 10 Sept 2018
  91. Vogel H, Müller A, Heckel DG, Gutzeit H, Vilcinskas A (2018) Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev Comp Immunol 78:141–148CrossRefPubMedGoogle Scholar
  92. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243CrossRefGoogle Scholar
  93. Wang AR, Ran C, Ringø E, Zhou ZG (2018) Progress in fish gastrointestinal microbiota research. Rev Aquac 10:626–640. CrossRefGoogle Scholar
  94. Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF, Good C (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microbiol 79:4974–4984. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Xiao X, Jin P, Zheng L, Cai M, Ziniu Y, Yu J, Zhang J (2018) Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquac Res 49:1569. CrossRefGoogle Scholar
  96. Yu Y (2008) Replacement of fishmeal with poultry byproduct meal and hydrolyzed feather meal in feeds for finfish. In: Lim C, Webster CD, Lee CS (eds) Alternative protein sources in aquaculture diets. The Haworth Press, New York, pp 51–93Google Scholar
  97. Zhang J-X, Guo L-Y, Feng L, Jiang W-D, Kuang S-Y, Liu Y et al (2013) Soybean b-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS ONE 8(3):e58115. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhou Z, Karlsen Ø, He S, Olsen RE, Yao B, Ringø E (2013) The effect of dietary chitin on the autochthonous gut bacteria of Atlantic cod (Gadus morhua L.). Aquac Res 44:1889–1900. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
  2. 2.Department of Agricultural, Forest and Food SciencesUniversity of TurinTurinItaly

Personalised recommendations