Advertisement

Reviews in Fish Biology and Fisheries

, Volume 28, Issue 2, pp 355–379 | Cite as

Life history and morphology of Eel Larvae in the Gulf of Guinea of western Africa: revisiting Jacques Blache’s research (1960–1977) 40 years later

  • Michael J. MillerEmail author
  • Tony Robinet
Reviews

Abstract

Eel larvae (leptocephali) are rarely studied extensively both spatially and temporally, and detailed illustrations of most species are limited. This study uses the unique research reported in the monograph of Blache (Leptocéphales des poissons anguilliformes dans la zone sud du golfe de Guinée. ORSTOM Faune Tropicale 10:1–381, 1977, in French) to describe and evaluate the species composition, abundance, life history characteristics and morphology of 10,284 anguilliform leptocephali collected throughout the year during 15 ichthyoplankton surveys (1960–1971) in relation to regional oceanography. Leptocephali of 70 species of 7 families were described, with Ophichthidae (26 species), Muraenidae (13), and Congridae (13) being the most diverse, and local spawning indicated by ≥ 34 species. Larvae of biogeographically restricted Heterencheylidae eels (mud eels) were abundant along the continental shelf and 5 species comprised 35% of total catches. Their larval distributions may reflect adult depth-segregation from nearshore/estuaries to the outer shelf and slope and larval retention. Nettastomatid leptocephali of Hoplunnis punctata were the most abundant species, and Rhynchoconger sp., Uroconger syringinus, Chlopsis olokun, and Dalophis boulengeri were also abundant. Small leptocephali distributions indicated spawning occurred over or near the continental shelf, and length-frequency data indicated most spawning was during the November–May warm-water season. Detailed morphology illustrations showed the characteristics of all stages of larvae. The Gulf of Guinea eel fauna is not diverse compared to the Indo-Pacific possibly due to phylogeography and a lack of coral reef habitats and the unusual low-latitude seasonal influx of cold surface waters, but is unique in being the worldwide center of distribution of the burrowing eels of the Heterencheylidae.

Keywords

Anguilliformes Gulf of Guinea Heterenchelyidae Larval distribution Leptocephali Metamorphosis 

Notes

Acknowledgements

This paper was made possible by the plankton sampling effort of the staff of ORSTOM and of course by the remarkable work of Jacques Blache (1922–1994). The monograph overviewed here formed the basis of his PhD thesis. The effort required them to collect, identify, measure and illustrate the distributions and morphology of more 10,000 leptocephali, and we are gratified to help bring some of the results of that work into this paper as a tribute to J. Blache and his colleagues for their work in the Gulf of Guinea. Support for M.J.M. was provided by the Eel Science Laboratory of K. Tsukamoto, and M. Shimizu assisted with scanning the illustrations of leptocephali. Any remaining copies of the monograph can be obtained from the French Museum of Natural History, and during the writing of this paper, an electronic copy of the monograph became available online as shown in the reference section, which now makes it available to scientists worldwide.

Supplementary material

11160_2017_9512_MOESM1_ESM.pdf (2.8 mb)
Supplementary material 1 (PDF 2819 kb)

Supplementary material 2 (MP4 5491 kb)

Supplementary material 3 (MP4 8292 kb)

References

  1. Afonso P, Porteiro FM, Santos RS, Barreiros JP, Worms J, Wirtz P (1999) Coastal marine fishes of São Tomé Island (Gulf of Guinea). Arquipélago. Life Mar Sci 17A:65–92Google Scholar
  2. Ali K, Kouadio K, Zahiri E-P et al (2011) Influence of the Gulf of Guinea coastal and equatorial upwellings on the precipitations along its northern coasts during the boreal summer period. Asian J Appl Sci 4:271–285CrossRefGoogle Scholar
  3. Anibaldi A, Franciosi CB, Massari F et al (2016) Morphology and species composition of Southern Adriatic Sea leptocephali evaluated using DNA barcoding. PLoS ONE 11:e0166137PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bakun A (1978) Guinea current upwelling. Nature 271:147–150CrossRefGoogle Scholar
  5. Bishop RE, Torres JJ, Crabtree RE (2000) Chemical composition and growth indices in leptocephalus larvae. Mar Biol 137:205–214CrossRefGoogle Scholar
  6. Blache J (1968) Contribution à la connaissance des poissons anguilliformes de la côte occidentale d’Afrique: 8e note. La famille des Echelidae. Bull IFAN Série A Sci Nat 30:1501–1539Google Scholar
  7. Blache J (1971) Larves leptocéphales des poissons anguilliformes dans le golfe de Guinée (zone sud): 1ère note. Larves de Muraenidae. Cah ORSTOM Série Océanographie 9:203–246Google Scholar
  8. Blache J (1972) Larves leptocéphales des poissons anguilliformes dans le golfe de Guinée (zone sud): 2e note. Les espèces adultes de Xenocongridae et leurs larves. Cah ORSTOM Série Océanographie 10:219–241Google Scholar
  9. Blache J (1977) Leptocéphales des poissons anguilliformes dans la zone sud du golfe de Guinée. ORSTOM Faune Tropicale 10:1–381. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/Fau_trop/08624.pdf
  10. Böhlke E (1989a) Orders Anguilliformes and Saccopharyngiformes. Fishes of the Western North Atlantic. Mem Sears Found Mar Res 1(9):1–655Google Scholar
  11. Böhlke E (1989b) Leptocephali. Fishes of the Western North Atlantic. Mem Sears Found Mar Res 1(9):657–1055Google Scholar
  12. Bourlès B, Gouriou Y, Chuchla R (1999) On the circulation in the upper layer of the western equatorial Atlantic. J Geophys Res Ocean 104:21151–21170CrossRefGoogle Scholar
  13. Bourlès B, D’Orgeville M, Eldin G et al (2002) On the evolution of the thermocline and subthermocline eastward currents in the equatorial Atlantic. Geophys Res Lett 29:1785CrossRefGoogle Scholar
  14. Caniaux G, Giordani H, Redelsperger J-L et al (2011) Coupling between the Atlantic cold tongue and the West African monsoon in boreal spring and summer. J Geophys Res 116:C04003CrossRefGoogle Scholar
  15. Carpenter KE, Springer VG (2005) The center of the center of marine shore fish biodiversity: the Philippine Islands. Environ Biol Fish 72:467–480CrossRefGoogle Scholar
  16. Castle PHJ (1964) Congrid leptocephali in Australasian waters with descriptions of Conger wilsoni (Bl. and Schn.) and C. verreauxi Kaup. Zool Publ Victoria Univ Wellington 37:1–45Google Scholar
  17. Castle PHJ (1965a) Muraenid leptocephali in Australasian waters. Trans R Soc NZ Zool 7:57–84Google Scholar
  18. Castle PHJ (1965b) Ophichthid leptocephali in Australasian waters. Trans R Soc NZ Zool 7:97–123Google Scholar
  19. Castle PHJ (1968) Larval development of the congrid eel, Gnathophis capensis (Kaup), off Southern Africa, with notes on the identity of Congermuraena australis Barnard. Zoologica Africana 3:139–154CrossRefGoogle Scholar
  20. Castle PHJ (1969) Species structure and seasonal distribution of leptocephali in the eastern Indian Ocean (110°E). Cah ORSTOM ser Ocean 7:53–88Google Scholar
  21. Castle PHJ (1979) Early life-history of the eel Moringua edwardsi (Pisces, Moringuidae) in the western North Atlantic. Bull Mar Sci 29:1–18Google Scholar
  22. Castle PHJ (1984) Notacanthiformes and Anguilliformes: development. In: Moser HG, Richards WJ (eds) Ontogeny and systematics of fishes. American Society of lchthyologists and herpetologists. Special Publication No 1 Allen Press, Lawrence, pp 62–93Google Scholar
  23. Castle PHJ (1997) Garden eel leptocephali: characters, generic identification, distribution, and relationships. Bull Mar Sci 60:6–22Google Scholar
  24. Castle PHJ, Robertson DA (1974) Early life history of the congrid eels Gnathophis habenatus and G. incognitus in New Zealand waters. NZ J Mar Freshw Res 8:95–110CrossRefGoogle Scholar
  25. Castle PHJ, Smith DG (1999) A reassessment of the eels of the genus Bathycongrus in the Indo-west Pacific. J Fish Biol 54:973–995Google Scholar
  26. Castonguay M, McCleave JD (1987) Vertical distributions, diel and ontogenetic vertical migrations and net avoidance of leptocephali of Anguilla and other common species in the Sargasso Sea. J Plankton Res 9:195–214CrossRefGoogle Scholar
  27. Chukwuone NA, Ukwe CN, Onugu A, Ibe CA (2009) Valuing the Guinea current large marine ecosystem: Estimates of direct output impact of relevant marine activities. Ocean Coast Manag 52:189–196CrossRefGoogle Scholar
  28. Da-Allada CY, Jouanno J, Gaillard F et al (2017) Importance of the Equatorial undercurrent on the sea surface salinity in the eastern equatorial Atlantic in boreal spring. J Geophys Res 122:521–538CrossRefGoogle Scholar
  29. Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–687CrossRefGoogle Scholar
  30. De Castro MS, Bonecker ACT (2005) Leptocephali collected off the eastern coast of Brazil (12–23°S). Zootaxa 935:1–28CrossRefGoogle Scholar
  31. De Schepper N, De Kegel B, Adriaens D (2007) Pisodonophis boro (ophichthidae: anguilliformes): specialization for head-first and tail-first burrowing? J Morphol 268:112–126PubMedCrossRefGoogle Scholar
  32. Denamiel C, Budgell WP, Toumi R (2013) The Congo River plume: impact of the forcing on the far-field and near-field dynamics. J Geophys Res Ocean 118:964–989CrossRefGoogle Scholar
  33. Djakouré S, Penven P, Bourlès B et al (2014) Coastally trapped eddies in the north of the Gulf of Guinea. J Geophys Res 119:6805–6819CrossRefGoogle Scholar
  34. Eagderi S, Adriaens D (2010) Cephalic morphology of Pythonichthys macrurus (Heterenchelyidae: anguilliformes): specializations for head-first burrowing. J Morphol 271:1053–1065PubMedCrossRefGoogle Scholar
  35. Eschmeyer WN, Fong JD (2017) Species by family/subfamily in the catalog of fishes. California Academy of Sciences, Institute for Biodiversity Science and Sustainability. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Accessed 14 Mar 2017
  36. Fahay MP (2007) Early stages of fishes in the Western North Atlantic Ocean: Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras. Vol. 1 Scorpaeniformes through Tetraodontiformes. Northwest Atlantic fisheries organization, Dartmouth. (http://www.nafo.int/publications/fahay/pdfs.html)
  37. Fahay MP, Obenchain CL (1978) Leptocephali of the ophichthid genera Ahlia, Myrophis, Ophichthus, Pisodonophis, Callechelys, Letharchus, and Apterichtus on the Atlantic continental shelf of the United States. Bull Mar Sci 28:442–486Google Scholar
  38. Feka NZ, Ajonina GN (2011) Drivers causing decline of mangrove in West-Central Africa: a review. Int J Biodivers Sci Ecosyst Serv Manag 7:217–230CrossRefGoogle Scholar
  39. Ferraris CJ (1985) Redescription and spawning behavior of the muraenid eel Gymnothorax herrei. Copeia 1985:518–520CrossRefGoogle Scholar
  40. Figueroa DE, Ehrlich M (2006) Systematics and distribution of leptocephali in the western South Atlantic. Bull Mar Sci 78:227–242Google Scholar
  41. Fortuno JM, Olivar MP (1986) Larvas de Anguilliformes capturadas en el Atlántico sudoriental. Misc Zool 10:223–231Google Scholar
  42. Froese R, Pauly D (eds) (2017) FishBase. World Wide Web electronic publication (version 02/2017). http://www.fishbase.org. Accessed January–February 2017
  43. Herbert G, Bourlès B, Penven P, Grelet J (2016) New insights on the upper layer circulation north of the Gulf of Guinea. J Geophys Res 121:6793–6815CrossRefGoogle Scholar
  44. Hoeksema BW (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. In: Renema W (ed) Biogeography, time, and place: distributions, barriers, and islands. Springer, Berlin, pp 117–178CrossRefGoogle Scholar
  45. Hopkins J, Lucas M, Dufau C et al (2013) Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level. Remote Sens Environ 139:365–385CrossRefGoogle Scholar
  46. Inoue JG, Miya M, Miller MJ et al (2010) Deep-ocean origin of the freshwater eels. Biol Lett 6:363–366PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jacoby DMP, Casselman JM, Crook V et al (2015) Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob Ecol Conserv 4:321–333CrossRefGoogle Scholar
  48. John H-C, Zettler ML (2005) Occurrences of Dalophis boulengeri (Teleostei, Ophichtidae) off Northern Namibia. Mitt Hamb Zool Mus Inst 102:167–172Google Scholar
  49. Jones PJ (1994) Biodiversity in the Gulf of Guinea: an overview. Biodivers Conserv 3:772–784CrossRefGoogle Scholar
  50. Kakizaki T, Kobayashi K, Nakatsubo T et al (2015) Spawning behavior of garden eels, Gorgasia preclara and Heteroconger hassi (Heterocongrinae), observed in captivity. Mar Freshw Behav Physiol 48:359–373CrossRefGoogle Scholar
  51. Kimura Y, Miller MJ, Minagawa G et al (2006) Evidence of a local spawning site of marine eels along northeastern Japan, based on the distribution of small leptocephali. Fish Oceanogr 15:183–190CrossRefGoogle Scholar
  52. Kolodziejczyk N, Bourlès B, Marin F et al (2009) Seasonal variability of the Equatorial Undercurrent at 10°W as inferred from recent in situ observations. J Geophys Res 114:C06014CrossRefGoogle Scholar
  53. Kurogi H, Chow S, Yanagimoto T et al (2016) Adult form of a giant anguilliform leptocephalus Thalassenchelys coheni Castle and Raju 1975 is Congriscus megastomus (Günther 1877). Ichthyol Res 63:239–246CrossRefGoogle Scholar
  54. Laborel J (1974) West African reef corals: an hypothesis on their origin. In: Proceedings of the 2nd international Coral Reef symposium, vol 1, pp 425–443Google Scholar
  55. Leiby MM (1989) Family Ophichthidae: Leptocephali. In: Böhlke EB (ed). Fishes of the Western North Atlantic. Leptocephali Part 9, Vol. 2. Sears Found Mar Res, New Haven:764–897Google Scholar
  56. Leis JM (2002) Pacific coral-reef fishes: the implications of behaviour and ecology of larvae for biodiversity and conservation, and a reassessment of the open population paradigm. Environ Biol Fish 65:199–208CrossRefGoogle Scholar
  57. Leis JM (2006) Are larvae of demersal fishes plankton or nekton? Adv Mar Biol 51:57–141PubMedCrossRefGoogle Scholar
  58. Leprieur F, Descombes P, Gaboriau T et al (2016) Plate tectonics drive tropical reef biodiversity dynamics. Nat Commun 7:11461.  https://doi.org/10.1038/ncomms11461 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Liénart C, Feunteun E, Miller MJ et al (2016) Geographic variation in stable isotopic and fatty acid composition of anguilliform leptocephali and particulate organic matter in the South Pacific. Mar Ecol Prog Ser 544:225–241CrossRefGoogle Scholar
  60. Lutjeharms JRE, Meeuwis JM (1987) The extent and variability of South-East Atlantic upwelling. South African J Mar Sci 5:51–62CrossRefGoogle Scholar
  61. Ma T, Miller MJ, Aoyama J, Tsukamoto K (2007) Genetic identification of Conger myriaster leptocephali in East China Sea. Fish Sci 73:989–994CrossRefGoogle Scholar
  62. Ma T, Miller MJ, Aoyama J et al (2008) Genetic identification of two types of Ariosoma leptocephali. Coast Mar Sci 32:48–53Google Scholar
  63. Materia S, Gualdi S, Navarra A, Terray L (2012) The effect of Congo River freshwater discharge on Eastern Equatorial Atlantic climate variability. Clim Dyn 39:2109–2125CrossRefGoogle Scholar
  64. McCosker JE, Hibino Y (2015) A review of the finless snake eels of the genus Apterichtus (Anguilliformes: Ophichthidae), with the description of five new species. Zootaxa 3941:49–78PubMedCrossRefGoogle Scholar
  65. Miller MJ (1995) Species assemblages of leptocephali in the Sargasso Sea and Florida Current. Mar Ecol Prog Ser 121:11–26CrossRefGoogle Scholar
  66. Miller MJ (2009) Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua BioSci Monogr 2:1–94CrossRefGoogle Scholar
  67. Miller MJ (2015) Nighttime vertical distribution and regional species composition of eel larvae in the western Sargasso Sea. Reg Stud Mar Sci 1:34–46CrossRefGoogle Scholar
  68. Miller MJ, McCleave JD (1994) Species assemblages of leptocephali in the subtropical convergence zone of the Sargasso Sea. J Mar Res 52:743–772CrossRefGoogle Scholar
  69. Miller MJ, McCleave JD (2007) Species assemblages of leptocephali in the southwestern Sargasso Sea. Mar Ecol Prog Ser 344:197–212CrossRefGoogle Scholar
  70. Miller MJ, Tsukamoto K (2004) An introduction to leptocephali biology and identification. Ocean Research Institute, University of Tokyo, TokyoGoogle Scholar
  71. Miller MJ, Tsukamoto K (2006) Studies on eels and leptocephali in Southeast Asia: a new research frontier. Coast Mar Sci 30:283–292Google Scholar
  72. Miller MJ, Otake T, Minagawa G et al (2002) Distribution of leptocephali in the Kuroshio current and East China Sea. Mar Ecol Prog Ser 235:279–288CrossRefGoogle Scholar
  73. Miller MJ, Aoyama J, Mochioka N et al (2006) Geographic variation in the assemblages of leptocephali in the western South Pacific. Deep Sea Res 53:776–794CrossRefGoogle Scholar
  74. Miller MJ, Wouthuyzen S, Ma T et al (2011) Distribution, diversity, and abundance of garden eel larvae off West Sumatra, Indonesia. Zool Stud 50:177–191Google Scholar
  75. Miller MJ, Norman MD, Tsukamoto K, Finn JK (2013a) Evidence of mimicry of gelatinous zooplankton by anguilliform leptocephali for predator avoidance. Mar Freshw Behav Physiol 45:375–384CrossRefGoogle Scholar
  76. Miller MJ, Stepputtis D, Bonhommeau S et al (2013b) Comparisons of catches of large leptocephali using an IKMT and a large pelagic trawl in the Sargasso Sea. Mar Biodivers 43:493–501CrossRefGoogle Scholar
  77. Miller MJ, Yamaguchi M, Wouthuyzen S et al (2013c) Ariosoma-type leptocephali (Congridae: Bathymyrinae) in the Mentawai Islands region off western Sumatra, Indonesia. Zool Stud 52:26CrossRefGoogle Scholar
  78. Miller MJ, Feunteun E, Aoyama J et al (2015) Biodiversity and distribution of leptocephali west of the Mascarene Plateau in the southwestern Indian Ocean. Prog Oceanogr 137:84–102CrossRefGoogle Scholar
  79. Miller MJ, Wouthuyzen S, Sugeha HY et al (2016) High biodiversity of leptocephali in Tomini Bay Indonesia in the center of the Coral Triangle. Reg Stud Mar Sci 8:99–113CrossRefGoogle Scholar
  80. Minagawa G, Miller MJ, Aoyama J et al (2004) Contrasting assemblages of leptocephali in the western Pacific. Mar Ecol Prog Ser 271:245–259CrossRefGoogle Scholar
  81. Minagawa G, Miller MJ, Kimura Y et al (2007) Seasonal differences in catches of leptocephali in the East China Sea and Suruga Bay, Japan. Estuar Coast Shelf Sci 71:730–740CrossRefGoogle Scholar
  82. Mochioka N, Tabeta O (2014) Leptocephali. In: Okiyama M (ed) An atlas of the early stage fishes in Japan, 2nd edn. Tokai University Press, Minamiyama, pp 2–89 (in Japanese)Google Scholar
  83. Moyer JT, Zaiser MJ (1982) Reproductive behavior of moray eels at Miyake-jima, Japan. Jpn J Ichthyol 28:466–468Google Scholar
  84. Okumura Y, Xie S-P (2004) Interaction of the Atlantic equatorial cold tongue and the African monsoon. J Clim 17:3589–3602CrossRefGoogle Scholar
  85. Raju SN (1985) Congrid eels of the eastern Pacific and key to their leptocephali. NOAA Technical Report NMFS 22, U.S. Department of CommerceGoogle Scholar
  86. Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268Google Scholar
  87. Richards WJ (1969) Elopoid leptocephali from Angolan waters. Copeia 1969:515–518CrossRefGoogle Scholar
  88. Richardson DE, Cowen RK (2004) Diversity of leptocephalus larvae around the island of Barbados (West Indies): relevance to regional distributions. Mar Ecol Prog Ser 282:271–284CrossRefGoogle Scholar
  89. Roberts CM, McClean CJ, Veron JEN et al (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284PubMedCrossRefGoogle Scholar
  90. Robins CR, Robins CH (1966) The R/V Pillsbury deep-sea biological expedition to the Gulf of Guinea, 1964–65. 5. Xenoconger olukun, a new xenocongrid eel from the Gulf of Guinea. Stud Trop Oceanogr Miami 4(1):117–124Google Scholar
  91. Ross SW, Casazza TL, Quattrini AM, Sulak KJ (2007) Anguilliform larvae collected off North Carolina. Mar Biol 150:681–695CrossRefGoogle Scholar
  92. Schott FA, Fischer J, Stramma L (1998) Transports and pathways of the upper-layer circulation in the western tropical Atlantic. J Phys Oceanogr 28:1904–1928CrossRefGoogle Scholar
  93. Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20CrossRefGoogle Scholar
  94. Shriver JF, Hurlburt HE, Smedstad OM et al (2007) 1/32 real-time global ocean prediction and value-added over 1/16 resolution. J Mar Syst 65:3–26CrossRefGoogle Scholar
  95. Sibuet M, Vangriesheim A (2009) Deep-sea environment and biodiversity of the West African Equatorial margin. Deep Sea Res Part II Top Stud Oceanogr 56:2156–2168CrossRefGoogle Scholar
  96. Signorini SR, Murtugudde RG, McClain CR et al (1999) Biological and physical signatures in the tropical and subtropical Atlantic. J Geophys Res Ocean 104:18367–18382CrossRefGoogle Scholar
  97. Smith DG (1979) Guide to the leptocephali (Elopiformes, Anguilliformes, and Notacanthiformes). NOAA Tech Rep NMFS Circ 424:1–39 (http://spo.nmfs.noaa.gov/Circulars/CIRC424.pdf)
  98. Smith DG (1989a) Introduction to leptocephali. In: Böhlke EB (ed), Fishes of the Western North Atlantic. Mem Sears Found Mar Res 1(9):657–668Google Scholar
  99. Smith DG (1989b) Family congridae. In: Böhlke EB (ed), Fishes of the Western North Atlantic. Mem Sears Found Mar Res 2(9):723–763Google Scholar
  100. Smith DG (1989c) Family Heterenchelyidae. In: Böhlke EB (ed) Fishes of the Western North Atlantic. Mem Sears Found Mar Res, Anguilliformes and Saccopharyngiformes, pp 48–54Google Scholar
  101. Smith DG (2002) Larvae of the garden eel genus Gorgasia (Congridae, Heterocongrinae) from the western Caribbean Sea. Bull Mar Sci 70:831–836Google Scholar
  102. Smith DG, Castle PHJ (1982) Larvae of the nettastomatid eels: systematics and distribution. Dana Report 90Google Scholar
  103. Smith DG, Irmak E, Özen Ö (2012) A redescription of the eel Panturichthys fowleri (Anguilliformes: Heterenchelyidae), with a synopsis of the Heterenchelyidae. Copeia 2012:484–493CrossRefGoogle Scholar
  104. Spalding M, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press, BerkeleyGoogle Scholar
  105. Spencer RGM, Hernes PJ, Aufdenkampe AK et al (2012) An initial investigation into the organic matter biogeochemistry of the Congo River. Geochim Cosmochim Acta 84:614–627CrossRefGoogle Scholar
  106. Stramma L, England M (1999) On the water masses and mean circulation of the South Atlantic Ocean. J Geophys Res 104:20833–20863CrossRefGoogle Scholar
  107. Tawa A, Kobayakawa M, Yoshimura T, Mochioka N (2013) Identification of leptocephali representing four muraenid species from the western North Pacific, based on morphometric and mitochondrial DNA sequence analyses. Bull Mar Sci 89:461–481CrossRefGoogle Scholar
  108. Tawa A, Aoyama J, Yoshimura T et al (2014) Leptocephalus larvae of two moray eels (Anguilliformes; Muraenidae), Gymnothorax sagmacephalus and Gymnothorax albimarginatus, identified from morphometric and genetic evidence. Ichthyol Res 61:32–41CrossRefGoogle Scholar
  109. Thresher RE (1984) Reproduction in reef fishes. Tropical Fish Hobbyist Publications, Neptune CityGoogle Scholar
  110. Ukwe CN, Ibe CA (2010) A regional collaborative approach in transboundary pollution management in the guinea current region of western Africa. Ocean Coast Manag 53:493–506CrossRefGoogle Scholar
  111. Ukwe CN, Ibe CA, Sherman K (2006) A sixteen-country mobilization for sustainable fisheries in the Guinea current large marine ecosystem. Ocean Coast Manag 49:385–412CrossRefGoogle Scholar
  112. Vic C, Berger H, Tréguier A-M, Couvelard X (2014) Dynamics of an equatorial river plume: Theory and numerical experiments applied to the Congo plume case. J Phys Oceanogr 44:980–994CrossRefGoogle Scholar
  113. White RH, Toumi R (2014) River flow and ocean temperatures: the Congo River. J Geophys Res Ocean 119:2501–2517CrossRefGoogle Scholar
  114. Wiebe PH, Benfield MC (2003) From the Hensen net toward four-dimensional biological oceanography. Prog Oceanogr 56:7–136CrossRefGoogle Scholar
  115. Wouthuyzen S, Miller MJ, Aoyama J et al (2005) Biodiversity of anguilliform leptocephali in the central Indonesian Seas. Bull Mar Sci 77:209–224Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Marine Science and Resources, College of Bioresource SciencesNihon UniversityFujisawaJapan
  2. 2.UMR BOREA (Biologie des Organismes et Ecosystèmes Aquatiques), Museum National d’Histoire NaturelleStation marine de ConcarneauConcarneauFrance

Personalised recommendations