Reviews in Fish Biology and Fisheries

, Volume 28, Issue 1, pp 213–227 | Cite as

Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean

  • Rodrigo R. Domingues
  • Alexandre W. S. Hilsdorf
  • Mahmood M. Shivji
  • Fabio V. H. Hazin
  • Otto B. F. Gadig
Research Paper


The silky shark, Carcharhinus falciformis, is a large-bodied, oceanic-coastal, epipelagic species found worldwide in tropical and subtropical waters. Despite its commercial importance, concerns about overexploitation, and likely ecological significance of this shark as an upper trophic-level predator, understanding of its population dynamics remains unclear for large parts of its distribution. We investigated the genetic diversity, population structure and demographic history of the silky shark along the western Atlantic Ocean based on the use of 707 bp of the mitochondrial DNA control region (mtCR). A total of 211 silky sharks were sampled, originating from five areas along the western Atlantic Ocean. The mitochondrial sequences revealed 40 haplotypes, with overall haplotype and nucleotide diversities of 0.88 (± 0.012) and 0.005 (± 0.003), respectively. The overall population structure was significantly different among the five western Atlantic Ocean regions. Phylogenetic analysis of mtCR sequences from globally sourced silky shark samples revealed two lineages, comprising a western Atlantic lineage and western Atlantic—Indo-Pacific lineage that diverged during the Pleistocene Epoch. In general, tests for the demographic history of silky sharks supported a population expansion for both the global sample set and the two lineages. Although our results showed that silky sharks have high genetic diversity, the current high level of overexploitation of this species requires long-term, scientifically informed management efforts. We recommend that fishery management and conservation plans be done separately for the two western Atlantic matrilineal populations revealed here.


Elasmobranch Fisheries management Gene flow Genetic diversity Marine connectivity Phylogeography 



We thank Fernando Mendonça for providing samples from Pará, Brazil. This work was developed as part of the requirements for the Ph.D. dissertation of author RRD in Zoology at the Sao Paulo State University - UNESP. This work was funded by the São Paulo Research Foundation (FAPESP #2009/59660-6 and #2013/08675-7) and Save Our Seas Foundation.

Supplementary material

11160_2017_9504_MOESM1_ESM.docx (180 kb)
Supplementary material 1 (DOCX 180 kb)
11160_2017_9504_MOESM2_ESM.docx (37 kb)
Supplementary material 2 (DOCX 36 kb)


  1. Allendorf FW, England PR, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337CrossRefPubMedGoogle Scholar
  2. Amorim AF, Arfelli CA, Fagundes L (1998) Pelagic elasmobranchs caught by longliners off southern Brazil during 1974-1997: an overview. Mar Freshwater Res 49:621–632CrossRefGoogle Scholar
  3. Avise JC (2000) Phylogeography: The history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. Barreto R, Ferretti F, Flemming JM, Amorim A, Andrade H, Worm B, Lessa R (2016) Trends in the exploitation of South Atlantic shark populations. Conserv Biol 30:792–804CrossRefPubMedGoogle Scholar
  5. Baum JK, Myers R (2004) Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico. Ecol Lett 7:135–145CrossRefGoogle Scholar
  6. Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of sharks populations in the northwest Atlantic. Science 299:389–391CrossRefPubMedGoogle Scholar
  7. Beerkircher L, Shivji M, Cortés E (2003) A Monte Carlo demographic analysis of the silky shark (Carcharhinus falciformis): implications of gear selectivity. Fish Bull 101:168–174Google Scholar
  8. Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 17:3754–3774PubMedGoogle Scholar
  9. Benavides MT, Horn RL, Feldheim KA, Shivji MS, Clarke SC, Wintner S, Natanson L, Braccini M, Boomer JJ, Gulak SJB, Chapman DD (2011) Global phylogeography of the dusky shark Carcharhinus obscurus: implications for fisheries management and monitoring the shark fin trade. Endang Species Res 14:13–22CrossRefGoogle Scholar
  10. Bernard AM, Shivji MS, Prince ED, Hazin FHV, Arocha F, Domingo A, Feldheim K (2014) Comparative population genetics and evolutionary history of two commonly misidentified billfishes of management and conservation concern. BMC Genet 15:141CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bernard AM, Feldheim KA, Heithaus MR, Wintner SP, Wetherbee BM, Shivji MS (2016) Population genetic dynamics of a highly migratory, apex predator shark. Mol Ecol 25:5312–5329CrossRefPubMedGoogle Scholar
  12. Bonfil R (2008) The biology and ecology of the silky shark, Carcharhinus falciformis. In: Camhi MD, Pikitch EK, Babcock EA (eds) Sharks of the open ocean: biology, fisheries and conservation. Blackwell Publishing Ltd., UK, pp 114–127CrossRefGoogle Scholar
  13. Bonfil R, Mena R, Anda D (1993) Biological parameters of commercially exploited silky sharks, Carcharhinus falciformis, from the Campeche bank, México. In: Branstetter, S, editor. Conservation Biology of Elasmobranchs. NOAA Technical Report NMFS 115, NOAA/NMFS, Silver Spring, MD, 73–86Google Scholar
  14. Bonfil R, Amorim A, Anderson C, Arauz R, Baum J, Clarke SC, Graham RT, Gonzalez M, Jolon M, Kyne PM, Mancini P, Márquez F, Ruíz C, Smith W (2009) Carcharhinus falciformis. The IUCN Red List of Threatened Species. Version 2015.2. Available at:
  15. Bowen B, Gaither MR, DiBattista JD, Iacchei M, Andrews KR, Grant WS, Toonen RJ, Briggs JC (2016) Comparative phylogeography of the ocean planet. Proc Natl Acad Sci 113:7962–7969CrossRefPubMedPubMedCentralGoogle Scholar
  16. Branstetter S (1987) Age, growth and reproductive biology of the silky shark, Carcharhinus falciformis and the scalloped hammerhead, Sphyrna lewini, from the northwestern Gulf of Mexico. Environ Biol Fish 19:161–173CrossRefGoogle Scholar
  17. Brendtro KS, Graves JS, McDowell JR (2008) Population genetic structure of escolar (Lepidocybium flavobrunneum). Mar Biol 155:11–22CrossRefGoogle Scholar
  18. Briggs JC, Bowen BW (2013) Marine shelf habitat: biogeography and evolution. J Biogeogr 40:1023–1035CrossRefGoogle Scholar
  19. Cabrera-Chávez-Costa AA, Galván-Magaña F, Escobar-Sánchez OE (2010) Food habits of the silky shark Carcharhinus falciformis (Müller & Henle, 1839) off the western coast of Baja California Sur, Mexico. J Appl Ichthyol 26:499–503CrossRefGoogle Scholar
  20. Castro ALF, Stewart BS, Wilson SG, Hueter RE, Meekan MG, Motta PJ, Bowen BW, Karl SA (2007) Population genetic structure of Easrth’s largest fish, the whale shark (Rhincodon typus). Mol Ecol 16:5183–5192CrossRefPubMedGoogle Scholar
  21. Chabot CL, Allen LG (2009) Global population structure of the tope (Galeorhinus galeus) inferred by mitochondrial control region sequence data. Mol Ecol 18:545–552CrossRefPubMedGoogle Scholar
  22. Chapman DD, Feldheim KA, Papastamatiou YP, Hueter RE (2015) There and back again: a review of residency and return migration in sharks, with implication for populations structure and management. Annu Rev Mar Sci 7:547–570CrossRefGoogle Scholar
  23. Clarke SC, Magnussen JE, Abercrombie DL, McAllister MK, Shivji MS (2006) Identification of Shark Species Composition and Proportion in the Hong Kong Shark Fin Market Based on Molecular Genetics and Trade Records. Conserv Biol 20:201–211CrossRefPubMedGoogle Scholar
  24. Clarke CR, Karl SA, Horn RL, Bernard AM, Lea JS, Hazin FH, Prodöhl PA, Shivji MS (2015) Global mitochondrial DNA phylogeography and population structure of the silky shark, Carcharhinus falciformis. Mar Biol 162:945–955CrossRefGoogle Scholar
  25. Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statitics. Evolution 47:855–863PubMedGoogle Scholar
  26. Cortés E, Arocha F, Beerkircher L, Carvalho F, Domingo A, Heupel M, Holtzhausen H, Santos MN, Ribeira M, Simpfendorfer C (2010) Ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Aquat Living Resour 23:25–34CrossRefGoogle Scholar
  27. Cortés E, Domingo A, Miller P, Forselled R, Mas F, Arocha F, Campana S, Coelho R, da Silva C, Hazin FVH, Holtzhausen H, Keene K, Lucena F, Ramirez K, Santos MN, Semba-Murakami Y, Yokawa K (2015) Expanded ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Col Vol Sci Pap ICCAT 71:2637–2688Google Scholar
  28. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  29. Domingues RR, Amorim AF, Hilsdorf AWS (2013) Genetic identification of Carcharhinus sharks from the southwest Atlantic Ocean (Chondrichthyes: carcharhiniformes). J Appl Ichthyol 29:738–742CrossRefGoogle Scholar
  30. Domingues RR, Caltabellotta FP, Amorim AF (2016) Length-length and length-weight relationships of Carcharhinus falciformis and C. signatus (Carcharhinidae: carcharhinus) caught by commercial fisheries in the Southwest Atlantic Ocean. Reg Studies Mar Sci 6:83–86CrossRefGoogle Scholar
  31. Drummond AJ, Bouckaert RR (2015) Bayesian and evolutionary analysis with BEAST. Cambridge University Press, United KingdomCrossRefGoogle Scholar
  32. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T, Krück NC, Morgan JAT, Tillett BJ, Ovenden JR (2012) A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. J Fish Biol 80:1789–1843CrossRefPubMedGoogle Scholar
  34. Duncan KM, Martin AP, Bowen BW, De Couet G (2006) Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 15:2239–2251CrossRefPubMedGoogle Scholar
  35. Ebert DA, Fowler S, Compagno L (2013) Sharks of the world: A fully illustrated guide. Wild Nature Press, PlymptonGoogle Scholar
  36. Excoffier L, Lischer H (2010) Arlequin ver. 3.5: an integrated software for population genetic data analysis. Switzerland: Computational and Molecular Population Genetics Lab, Institute of Zoology, University of BerneGoogle Scholar
  37. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetic 131:479–491Google Scholar
  38. Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  39. Gaither MR, Bowen BW, Rocha LA, Briggs JC (2016) Fishes that rule the world: circumtropical distributions revisited. Fish Fish 17:664–669CrossRefGoogle Scholar
  40. Galván-Tirado C, Díaz-Jaimes P, García-de León FJ, Galván-Magaña FG, Uribe-Alcocer M (2013) Historical demography and genetic differentiation inferred from the mitochondrial DNA of the silky shark (Carcharhinus falciformis) in the Pacific Ocean. Fish Res 147:36–46CrossRefGoogle Scholar
  41. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331CrossRefPubMedGoogle Scholar
  42. Grant WS (2015) Problems and cautions with sequence mismatch analysis ad Bayesian skyline plots to infer historical demography. J Hered 1:1–14Google Scholar
  43. Graves JE (1998) Molecular insights into the population structures of cosmopolitan marine fishes. J Hered 89:427–437CrossRefGoogle Scholar
  44. Graves JE, McDowell JR (2003) Stock structure of the world’s Istiophorid billfishes; a genetic perspective. Mar Freshwater Res 54:287–298CrossRefGoogle Scholar
  45. Han Z, Yanagimoto T, Zhang Y, Gao T (2012) Phylogeography study of Ammodytes personatus in Northwestern Pacific: pleistocene Isolation, temperature and current conducted secondary contact. PLoS ONE 7(5):e37425CrossRefPubMedPubMedCentralGoogle Scholar
  46. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Am J Hum Biol 66:591–600Google Scholar
  47. Hazin FH, Oliveira PGV, Macena BCL (2007) Aspects of the reproductive biology of the silky shark, Carcharhinus falciformis (Nardo, 1987), in the Vicinity of Archipelago of Saint Peter and Saint Paul, in the Equatorial Atlantic Ocean. Col Vol Sci Pap ICCAT 60:648–651Google Scholar
  48. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  49. ICCAT (2011) Recommendation by ICCAT on the conservation of silky sharks caught in association with ICCAT fisheries, 11-08 BYC. Available at:
  50. ICCAT (2015) 2014 Intersessions meeting of the shark species group (Piriapolis, Uruguay, 10-1 March 2014). Collect Vol Sci Pap ICCAT 71:2458–2550Google Scholar
  51. Karl SA, Castro ALF, Lopez JA, Charvet P, Burgess GH (2011) Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA. Conserv Genet 12:371–382CrossRefGoogle Scholar
  52. Keeney DB, Heist EJ (2006) Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Mol Ecol 15:3669–3679CrossRefPubMedGoogle Scholar
  53. Keeney DB, Heupel M, Hueter RE, Heist EJ (2005) Microsatellite and mitochondrial analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Mol Ecol 14:1911–1923CrossRefPubMedGoogle Scholar
  54. Kingman JFC (1982) The coalescent. Stoch Proc Appl 13:235–248CrossRefGoogle Scholar
  55. Kohler NE, Casey JG, Turner PA (1998) NMFS cooperative shark tagging program, 1962-93: an atlas of shark tag and recapture data. Mar Fish Rev 60:1–87Google Scholar
  56. Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206CrossRefPubMedGoogle Scholar
  57. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  58. Ludt WB, Rocha LA (2015) Shifting seas: the impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J Biogeogr 42:25–38CrossRefGoogle Scholar
  59. Maltagliati F, Giuseppe GD, Barbieri M, Castelli A, Dini F (2010) Phylogeography and genetic structure of the edible sea urchin Paracentrotus lividus (Echnodermata: echinoidea) inferred from the mitochondrial cytochrome b gene. Biol J Linnaen Soc 100:910–923CrossRefGoogle Scholar
  60. Martinez P, González EG, Castillo R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416CrossRefPubMedGoogle Scholar
  61. Mendonça FF, Oliveira C, Gadig OBF, Foresti F (2011) Phylogeography and genetic population structure of Caribbean sharpnose shark Rhizoprionodon porosus. Rev Fish Biol Fisheries 21:799–814CrossRefGoogle Scholar
  62. Mendonça FF, Oliveira C, Gadig OBF, Foresti F (2013) Diversity and genetic population structure of the Brazilian sharpnose shark Rhizoprionodon lalandii. Aquat Conserv 23:850–857CrossRefGoogle Scholar
  63. O’Brien SM, Gallucci VF, Hauser L (2013) Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conserv Genet 14:125–144CrossRefGoogle Scholar
  64. Ovenden JR (2013) Crinkles in connectivity: combining genetic and others types of biological data to estimate movement and interbreeding between populations. Mar Freshwater Res 64:201–207CrossRefGoogle Scholar
  65. Peeters FJC, Acheson R, Brummer GJA, Ruijter WPM, Schneider RR, Ganssen GM, Ufkes E, Kroon D (2004) Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430:661–665CrossRefPubMedGoogle Scholar
  66. Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39CrossRefPubMedGoogle Scholar
  67. Portnoy DS, Heist EJ (2012) Molecular markers: progress and prospects for understanding reproductive ecology in elasmobranchs. J Fish Biol 80:1120–1140CrossRefPubMedGoogle Scholar
  68. Portnoy DS, McDowell JR, Heist EJ, Musick JA, Graves JE (2010) World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Mol Ecol 19:1994–2010CrossRefPubMedGoogle Scholar
  69. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  70. Rambaut A (2008) FIGTREE v. 1. 2. Available at
  71. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available at:
  72. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100CrossRefPubMedGoogle Scholar
  73. Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86CrossRefPubMedGoogle Scholar
  74. Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171CrossRefGoogle Scholar
  75. Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc London B 272:573–579CrossRefGoogle Scholar
  76. Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512CrossRefGoogle Scholar
  77. Rodríguez-Zárate CJ, Rocha-Olivares A, Beheregaray LB (2013) Genetic signature of a recent metapopulation bottleneck in the olive ridley turtle (Lepydochelys olivacea) after intensive commercial exploitation in Mexico. Conserv Biol 168:10–18CrossRefGoogle Scholar
  78. Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615CrossRefPubMedGoogle Scholar
  79. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  80. Sánchez-de Ita JA, Quiñonez-Velázquez C, Gálvan-Magaña F, Bocanegra-Castillo N, Félix-Uraga R (2011) Age and growth of the silky shark Carcharhinus falciformis from the west coast of Baja California Sur, Mexico. J Appl Ichthyol 27:20–24CrossRefGoogle Scholar
  81. Santos S, Farias IP, Schneider H, Sampaio I (2006) Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Mol Ecol 15:4361–4373CrossRefPubMedGoogle Scholar
  82. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562PubMedPubMedCentralGoogle Scholar
  83. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  84. Theisen TC, Bowen BW, Lanier W, Baldwin JD (2008) High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Mol Ecol 17:4233–4247CrossRefPubMedGoogle Scholar
  85. Veríssimo A, Sampaio Í, McDowell JR, Alexandrino P, Mucientes G, Queiroz N, da Silva C, Jones CS, Nobles LR (2017) World without borders – genetic population structure of a highly migratory marine predator, the blue shark (Prionace glauca). Ecol Evol. PubMedPubMedCentralGoogle Scholar
  86. White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc B 277:1685–1694CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rodrigo R. Domingues
    • 1
    • 2
  • Alexandre W. S. Hilsdorf
    • 3
  • Mahmood M. Shivji
    • 4
  • Fabio V. H. Hazin
    • 5
  • Otto B. F. Gadig
    • 1
    • 2
  1. 1.Universidade Estadual Paulista – UNESP, Instituto de Biociências de Rio ClaroRio ClaroBrazil
  2. 2.Laboratório de Pesquisa de Elasmobrânquios, Instituto de BiociênciasUniversidade Estadual Paulista – UNESP, Campus do Litoral PaulistaSão VicenteBrazil
  3. 3.Universidade de Mogi das Cruzes, Núcleo Integrado de Biotecnologia.Mogi Das Cruzes, São PauloBrazil
  4. 4.Save Our Seas Shark Research Center USA and Guy Harvey Research InstituteNova Southeastern UniversityDania BeachUSA
  5. 5.Laboratório de Oceanografia Pesqueira, Departamento de Pesca e AquiculturaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations