Advertisement

Reviews in Fish Biology and Fisheries

, Volume 27, Issue 3, pp 615–649 | Cite as

Responsible genetic approach to stock restoration, sea ranching and stock enhancement of marine fishes and invertebrates

  • W. Stewart Grant
  • James Jasper
  • Dorte Bekkevold
  • Milo Adkison
Reviews

Abstract

The origins of agriculture date to about 9000 years, but commercial culture and supplementation of marine populations reach back only a few centuries. Hence, wild populations still play a major role in seafood production. Closed culture, stock restorations, sea ranching and stock enhancements of marine fishes and invertebrates have been implemented with various outcomes. A review of the literature indicates that considerable effort has been directed toward culture technologies to maximize production, but scant attention has been given to genetic risks to wild populations. Genetic risks from stock enhancements can be substantial, because of inattention to brood-stock sizes, and because hybridization between hatchery-reared and wild individuals can lower the fitness or lead to the extinction of a natural population. In many cases, small brood-stock sizes have led to the loss of genetic diversity. In some cases, hatchery-reared individuals appear to have replaced, rather than supplemented, wild populations. Here, we outline a responsible approach to managing genetic resources that includes six steps: (1) assess the costs and benefits of a stock restoration or enhancement, (2) set goals and genetic benchmarks, (3) use appropriate brood stock and limit domestication, (4) design release strategies that maximize the effectiveness of supplementation efforts, (5) track individuals after release and (6) minimize genetic impacts on wild populations. Stock supplementation is often viewed as an immediate solution to a stock decline, but should be undertaken as a last resort because of the high cost of implementation and the substantial ecological and genetic risks to wild populations.

Keywords

Effective population size Genetic diversity Hatchery brood stock Marine species Stock supplementation 

Notes

Acknowledgements

C. Habicht, H. Liller, W. Templin and R.S. Waples provided comments on various drafts of the manuscript. The writing of this review was supported by Saltonstall-Kennedy Grant 15AKR009 and by North Pacific Research Board Projects 1526 and 1618.

References

  1. Addison JT, Bannister RCA (1994) Re-stocking and enhancement of clawed lobster stocks: a review. Crustaceana 67:131–155CrossRefGoogle Scholar
  2. Agashe D (2009) The stabilizing effect of intraspecific genetic variation on population dynamics and in novel and ancestral habitats. Am Nat 174:255–267PubMedCrossRefGoogle Scholar
  3. Agnalt A-L, Jøstad KE, Kristiansen T, Nøstvold E, Farestveit E, Næss H, Paulsen OI, Svåsand T (2004) Enhancing the European lobster (Homarus gammarus) stock at Kvitsøy Islands: perspectives of rebuilding Norwegian stocks. Ch 30. In: Leber KM, Kitada S, Svåsand T, Blankenship HL (eds) Stock enhancement and sea ranching, 2nd edn. Blackwell, Oxford, pp 415–426Google Scholar
  4. Aiken DE, Waddy SL (1986) Environmental influence on recruitment of American lobster, Homarus americanus: a perspective. Can J Fish Aquat Sci 43:2258–2270CrossRefGoogle Scholar
  5. Alheit J, Hagen E (1997) Long-term climate forcing of European herring and sardine populations. Fish Oceanogr 6:130–139CrossRefGoogle Scholar
  6. Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190CrossRefGoogle Scholar
  7. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Wiley, OxfordGoogle Scholar
  8. Anderson EC, Garza JC (2006) The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 172:2567–2582PubMedPubMedCentralCrossRefGoogle Scholar
  9. Anderson D, Hedgecock D (2010) Inbreeding depression and growth heterosis in larvae of the purple sea urchin Strongylocentrotus purpuratus (Stimpson). J Exp Mar Biol Ecol 384:68–75CrossRefGoogle Scholar
  10. Anderson PJ, Piatt JF (1999) Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar Ecol Prog Ser 189:117–123CrossRefGoogle Scholar
  11. Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–103PubMedCrossRefGoogle Scholar
  12. Araki H, Berejikian BA, Ford MJ, Blouin MS (2008) Fitness of hatchery-reared salmonids in the wild. Evol Appl 1:342–355PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arkush KD, Giese AR, Mendonca HL, McBride AM, Marty GD, Hedrick PW (2002) Resistance to three pathogens in the endangered winter-run Chinook salmon (Oncorhynchus tshawytscha): effects of inbreeding and major histocompatibility complex genotypes. Can J Fish Aquat Sci 59:966–975CrossRefGoogle Scholar
  14. Arnaud-Haond S, Vonau V, Bonhomme F, Boudry P, Blanc F, Prou J, Seaman T, Goyard E (2004) Spatio-temporal variation in the genetic composition of wild populations of pearl oyster (Pinctada margaritifera comingii) in French Polynesia following 10 years of juvenile translocation. Mol Ecol 13:2001–2007PubMedCrossRefGoogle Scholar
  15. Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrao EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15(12):3515–3525PubMedCrossRefGoogle Scholar
  16. Arnold WS (2006) Application of larval release for restocking and stock enhancement of coastal marine bivalve populations. Rev Fish Sci 16:65–71CrossRefGoogle Scholar
  17. Ashley MV, Willson MF, Pergams ORW et al (2003) Evolutionarily enlightened management. Biol Conserv 111:115–123CrossRefGoogle Scholar
  18. Audzijonyte A, Kuparinen A, Gorton R, Fulton EA (2013) Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact. Biol Lett 9:20121103PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bailey KM, Brown ES, Duffy-Anderson JT (2003) Aspects of distribution, transport and recruitment of Alaska plaice (Pleuronectes quadrituberculatus) in the Gulf of Alaska and eastern Bering Sea: comparison of marginal and central populations. J Sea Res 50:87–95CrossRefGoogle Scholar
  20. Bailey JK, Schweitzer JA, Úbeda F et al (2009) From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Philos Trans R Soc B 364:1607–1616CrossRefGoogle Scholar
  21. Bailey JK, Genung MA, Ware I, Gorman C, van Nuland ME et al (2014) Indirect genetic effects: an evolutionary mechanism linking feedbacks, genotypic diversity and coadaptation in a climate change context. Funct Ecol 28:87–95CrossRefGoogle Scholar
  22. Bannister RCA, Addison JT (1998) Enhancing lobster stocks: a review of recent European methods, results and future prospects. Bull Mar Sci 62:369–387Google Scholar
  23. Barrett RD, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44PubMedCrossRefGoogle Scholar
  24. Bechtol WR, Kruse GH (2009a) Analysis of a stock-recruit relationship for red king crab off Kodiak Island, Alaska. Mar Coast Fish 1:29–44CrossRefGoogle Scholar
  25. Bechtol WR, Kruse GH (2009b) Reconstruction of historical abundance and recuitment of red king crab during 1960–2004 around Kodiak, Alaska. Fish Res 100:86–98CrossRefGoogle Scholar
  26. Bekkevold D, Hansen MM, Nielsen EE (2006) Genetic impact of gadoid culture on wild fish populations: predictions, lessons from salmonids, and possibilities for minimizing adverse effects. ICES J Mar Sci 63:198–208CrossRefGoogle Scholar
  27. Bekkevold D, Gross R, Arula T, Helyar SJ, Ojaveer H (2016) Outlier loci detect intraspecific biodiversity amongst Spring and Autumn spawning herring across local scales. PLoS ONE 11:e0148499PubMedPubMedCentralCrossRefGoogle Scholar
  28. Berec L, Angulo E, Courchamp F (2006) Multiple Allee effects and population management. Trends Ecol Evol 22:185–191PubMedCrossRefGoogle Scholar
  29. Beverton RJH (1995) Spatial limitation of population size: the concentration hypothesis. Neth J Sea Res 34:1–6CrossRefGoogle Scholar
  30. Beyer JE, Kirchner CH, Holtzhausen JA (1999) A method to determine size-specific natural mortality applied to west coast steenbras (Lithognathus aureti) in Namibia. Fish Res 41:133–153CrossRefGoogle Scholar
  31. Blake SG, Black NJ, Oesterling MJ, Graves JE (1997) Genetic divergence and loss of diversity in two cultured populations of the bay scallop, Argopecten irradians (Lamarck, 1819). J Shellfish Res 16:55–58Google Scholar
  32. Blanco Gonzalez E, Umino T (2009) Fine-scale genetic structure derived from stocking black sea bream Acanthopagrus schlegelii (Bleeker, 1854), in Heroshima Bay, Japan. Jpn J Appl Ichthyol 25:407–410CrossRefGoogle Scholar
  33. Blanco Gonzalez E, Aritaki M, Knutsen H, Taniguchi N (2015) Effects of large-scale releases on the genetic structure of red sea bream (Pagrus major, Temminck et Schlegel) populations in Japan. PLoS ONE 10:e0125743PubMedPubMedCentralCrossRefGoogle Scholar
  34. Blankenship HL, Leber KM (1995) A responsible approach to marine stock enhancement. Am Fish Soc Symp 15:167–175Google Scholar
  35. Blaxter JHS (2000) The enhancement of marine fish stocks. Adv Mar Biol 38:2–54Google Scholar
  36. Bohnsack JA, Johnson DL, Ambrose RF (1991) Ecology of artificial reef habitats and fishes. In: Seaman WR Jr, Sprague LM (eds) Artificial habitats for marine and freshwater fisheries. Academic Press, London, pp 61–107CrossRefGoogle Scholar
  37. Botsford LW, Castilla JC, Peterson CH (1997) The management of fisheries and marine ecosystems. Science 277:509–515CrossRefGoogle Scholar
  38. Botsford LW, Nicheli F, Hastings A (2003) Principles for the design of marine reserves. Ecol Appl 13:25–31CrossRefGoogle Scholar
  39. Brown C, Day RL (2002) The future of stock enhancements: lessons for hatchery practice from conservation biology. Fish Fish 3:79–94CrossRefGoogle Scholar
  40. Bruford MW, Davies N, Dulloo ME, Faith DP, Walters M (2017) Monitoring changes in genetic diversity. In: Walters M, Scholes RJ (eds) The GEO handbook on biodiversity observation networks. Springer International Publishing, pp 107–128Google Scholar
  41. Brumbaugh RD, Coen LD (2009) Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: a review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. J Shellfish Res 28:47–161CrossRefGoogle Scholar
  42. Brush SB (1995) In situ conservation of landraces in centers of crop diversity. Crop Sci 35:346–354CrossRefGoogle Scholar
  43. Buckley RM (1989) Habitat alterations as a basis for enhancing marine fisheries. CalCOFI Rep 30:40–45Google Scholar
  44. Bürger R, Lynch M (1995) Evolution and extinction in a changing environment: a quantitative genetic analysis. Evolution 49:151–163PubMedCrossRefGoogle Scholar
  45. Busack CA, Currens KP (1995) Genetic risks and hazards in hatchery operations: fundamental concepts and issues. Am Fish Soc Symp 15:71–80Google Scholar
  46. Butcher A, Mayer D, Willet D, Johnston M, Smallwood D (2003) Scale pattern analysis is preferable to OTC marking of otoliths for differentiating between stocked and wild dusky flathead, Platycephalus fuscus, and sand whiting, Sillago ciliata. Fish Manag Ecol 10:163–172CrossRefGoogle Scholar
  47. Butler MJ IV, Herrnkind WF (1997) A test of recruitment limitation and the potential for artificial enhancement of spiny lobster (Panulirus argus) populations in Florida. Can J Fish Aquat Sci 54:452–463CrossRefGoogle Scholar
  48. Caballero A, Garcia-Dorado A (2013) Allelic diversity and its implications for the rate of adaptation. Genetics 195:1373–1384PubMedPubMedCentralCrossRefGoogle Scholar
  49. Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Ann Rev Ecol Syst 27:477–500CrossRefGoogle Scholar
  50. Carson EW, Karlsson S, Saillant E, Gold JR (2009) Genetic studies of hatchery-supplemented populations of red drum in four Texas bays. N Am J Fish Manag 29:1502–1510CrossRefGoogle Scholar
  51. Chaoui L, Gagnaire PA, Guinand B, Quignard JP, Tsigenopoulos C, Kara MH, Bonhomme F (2012) Microsatellite length variation in candidate genes correlates with habitat in the gilthead sea bream Sparus aurata. Mol Ecol 21:5497–5511PubMedCrossRefGoogle Scholar
  52. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Ann Rev Ecol Syst 18:237–268CrossRefGoogle Scholar
  53. Charlesworth D, Morgan MT, Charlesworth B (1993) Mutation accumulation in finite outbreeding and inbreeding populations. Genet Res 55:39–56CrossRefGoogle Scholar
  54. Chen K, Ciannelli L, Decker MB et al (2014) Reconstructing sour-sink dynamics in a population with a pelagic dispersal phase. PLoS ONE 9:e95316PubMedPubMedCentralCrossRefGoogle Scholar
  55. Chesson P (1998) Recruitment limitation: a theoretical perspective. Austral J Ecol 23:234–240CrossRefGoogle Scholar
  56. Christensen V, Guenette S, Heymans JJ et al (2003) Hundred-year decline of North Atlantic predatory fishes. Fish Fish 4:1–24CrossRefGoogle Scholar
  57. Coleman F, Travis J, Thistle AB (1998) Marine stock enhancement: a new perspective. Bull Mar Sci 62:303Google Scholar
  58. Conover DO (1998) Local adaptation in marine fishes: evidence and implications for stock enhancement. Bull Mar Sci 62:477–493Google Scholar
  59. Conover DO, Munch SB (2002) Sustaining fisheries yields over evolutionary time scales. Science 297:94–96PubMedCrossRefGoogle Scholar
  60. Conover DO, Clarke LM, Munch SB, Wagner GN (2006) Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J Fish Biol 69:21–47CrossRefGoogle Scholar
  61. Cowx IG (1994) Stocking strategies. Fish Manag Ecol 1:15–30CrossRefGoogle Scholar
  62. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270PubMedCrossRefGoogle Scholar
  63. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New YorkGoogle Scholar
  64. Crowder LB, Lyman SJ, Figueira WF, Priddy J (2000) Source-sink population dynamics and the problem of siting marine reserves. Bull Mar Sci 66:799–820Google Scholar
  65. Cury P, Roy C (1989) Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can J Fish Aquat Sci 46:670–680CrossRefGoogle Scholar
  66. David P (1998) Heterozygosity-fitness correlations: new perspectives on old problems. Heredity 80:531–537PubMedCrossRefGoogle Scholar
  67. Davis JLD, Young AC, Aguilar R (2004) Differences between hatchery-raised and wild blue crabs (Callinectes sapidus): implications for stock enhancement potential. Trans Am Fish Soc 133:1–14CrossRefGoogle Scholar
  68. Davis JLD, Young-Williams AC, Hines AH, Zohar Y (2005) Assessing the potential for stock enhancement in the case of the Chesapeake Bay blue crab (Callinectes sapidus). Can J Fish Aquat Sci 62:109–122CrossRefGoogle Scholar
  69. Doherty PJ (1999) Recruitment limitation is the theoretical basis for stock enhancement in marine populations. In: Howell BR, Moksness E, Svåsand T (eds) Stock enhancement and sea ranching. Fishing News Books, Oxford, pp 9–21Google Scholar
  70. Eggleston D, Armstrong DA (1995) Pre- and post-settlement determinants of estuarine Dungeness crab recruitment. Ecol Monogr 65:193–216CrossRefGoogle Scholar
  71. Eggleston DB, Johnson EG, Kellison GT, Plaia GR, Huggett CL (2008) Pilot evaluation of early juvenile blue crab stock enhancement using a replicated BACI design. Rev Fish Sci 16:91–100CrossRefGoogle Scholar
  72. Evans D, Bartlett J, Sweijd N, Cook P, Elliott NG (2004) Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture 233:109–127CrossRefGoogle Scholar
  73. Exadactylos A, Geffen AJ, Thorpe JP (1999) Growth and genetic variation in hatchery-reared larval and juvenile Dover sole, Solea solea (L.). Aquaculture 176:209–226CrossRefGoogle Scholar
  74. Falconer DF, Mackay TFC (1996) Introduction to quantitative genetics. Prentice Hall, New YorkGoogle Scholar
  75. FAO (UN Food and Agriculture Organization) (2013) In vivo conservation of animal genetic resources. FAO Animal Production and Health Guidelines. No. 14, RomeGoogle Scholar
  76. FAO (UN Food and Agriculture Organization) (2014) The state of world fisheries and aquaculture. No. 3, RomeGoogle Scholar
  77. Fogarty MJ, Botsford LW (2007) Population connectivity and spatial management of marine fisheries. Oceanography 20:112–123CrossRefGoogle Scholar
  78. Fogarty MJ, Idoine JS (1986) Recruitment dynamics in an American lobster (Homarus americanus) population. Can J Fish Aquat Sci 43:2368–2376CrossRefGoogle Scholar
  79. Ford MJ, Fuss H, Boelts B, LaHood E, Hard J, Miller J (2006) Changes in run timing and natural smolt production in a naturally spawning coho salmon (Oncorhynchus kisutch) population after 60 years of intensive hatchery supplementation. Can J Fish Aquat Sci 63:2343–2355CrossRefGoogle Scholar
  80. Fox CJ, Planque BP, Darby CD (2000) Synchrony in the recruitment time-series of plaice (Pleuronectes platessa L.) around the United Kingdom and the influence of sea temperature. J Sea Res 44:159–168CrossRefGoogle Scholar
  81. Francis RC, Hixon MA, Clarke ME, Murawski SA, Ralston S (2007) Ten commandments for ecosystem-based fisheries scientists. Fisheries 32:217–233CrossRefGoogle Scholar
  82. Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107CrossRefGoogle Scholar
  83. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  84. Frankham R, Bradshaw C, Brook RW (2014) Genetics in conservation management: revised recommendations for the 50/500 rule, Red List criteria and population viability analyses. Biol Conserv 170:56–63CrossRefGoogle Scholar
  85. Fujio Y, von Brand E (1991) Differences in degree of homozygosity between seed and sown populations of the Japan Scallop Patinopecten yessoensis. Nipp Suis Gakk 57:45–50CrossRefGoogle Scholar
  86. Gaffney PM, Rubin VP, Hedgecock D, Powers DA, Morris G, Hereford L (1996) Genetic effects of artificial propagation: signals from wild and hatchery populations of red abalone in California. Aquaculture 143:257–266CrossRefGoogle Scholar
  87. Gagnaire P-A, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S et al (2015) Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl 8:769–786PubMedPubMedCentralCrossRefGoogle Scholar
  88. Gagnaire P-A, Gaggiotti OE (2016) Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr Zool 62(6):603–616CrossRefGoogle Scholar
  89. Gamble RJ, Link JS (2012) Using an aggregate production simulation model with ecological interactions to explore effects of fishing and climate on a fish community. Mar Ecol Prog Ser 459:259–274CrossRefGoogle Scholar
  90. Gamfeldt L, Källström B (2007) Increasing intraspecific diversity increased predictability in population survival in the face of perturbations. Oikos 116:700–705CrossRefGoogle Scholar
  91. Gamfeldt L, Wallén J, Jonsson PR, Bentsson KM, Havenhand JN (2005) Increasing intraspecific diversity enhances settling success in a marine invertebrate. Ecology 86:3219–3224CrossRefGoogle Scholar
  92. Garibaldi L (2012) The FAO global capture production database: a six-decade effort to catch the trend. Mar Policy 36:760–768CrossRefGoogle Scholar
  93. Gascoigne J, Lipcius RH (2004) Allee effects in marine systems. Mar Ecol Prog Ser 269:49–59CrossRefGoogle Scholar
  94. Geldenhuys G, Glanzmann B, Lombard D, Moolay S, Carr J, Bardien S (2014) Identification of a common found couple for 40 South African Afrikaner families with Parkinson’s disease. S Afr Med J 104:413–419PubMedCrossRefGoogle Scholar
  95. Ghalambor CJ, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407CrossRefGoogle Scholar
  96. Gharrett AJ, Joyce J, Smoker WW (2013) Fine-scale temporal adaptation within a salmonid population: mechanism and consequences. Mol Ecol 22:4457–4469PubMedCrossRefGoogle Scholar
  97. Gilk SE, Wang IA, Hoover CL, Smoker WW, Taylor SG, Gray AK, Gharrett AJ (2004) Outbreeding depression in hybrids between spatially separated pink salmon, Oncorhynchus gorbuscha, populations: marine survival, homing ability, and variability in family size. Environ Biol Fish 69:287–297CrossRefGoogle Scholar
  98. Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275:181–184PubMedCrossRefGoogle Scholar
  99. Gutierrez-Gonzalez JL, Perez-Enriquez R (2005) A genetic evaluation of stock enhancement of blue abalone Haliotis fulgens in Baja California, Mexico. Aquaculture 247:233–242CrossRefGoogle Scholar
  100. Haddaway NR, Woodcock P, Macura B, Collins A (2015) Making literature review more reliable through application of lessons from systematic reviews. Conserv Biol 29:1596–1605PubMedCrossRefGoogle Scholar
  101. Halpern BS, Gaines SD, Warner RR (2005) Habitat size recruitment, and longevity as factors limiting population size in stage-structured species. Am Nat 165:82–94PubMedGoogle Scholar
  102. Hamasaki K, Kitada S (2008a) Potential of stock enhancement for decapod crustaceans. Rev Fish Sci 16:164–174CrossRefGoogle Scholar
  103. Hamasaki K, Kitada S (2008b) The enhancement of abalone stocks: lessons from Japanese case studies. Fish Fish 9:243–260CrossRefGoogle Scholar
  104. Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474PubMedCrossRefGoogle Scholar
  105. Hare MP, Allen SK Jr, Bloomer P, Camara MD, Carnegie RB, Murfree J, Luckenbach M et al (2006) A genetic test for recruitment enhancement in Chesapeake Bay oysters, Cassostrea virginica, after population supplementation with a disease tolerant strain. Conserv Genet 7:717–734CrossRefGoogle Scholar
  106. Harvell CD, Kim K, Burkholder JM et al (1999) Emerging marine diseases: climate Links and anthropogenic factors. Science 285:1505–1510PubMedCrossRefGoogle Scholar
  107. Hauser L, Adcock GH, Smith PJ, Bernal Ramirez JH, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci USA 99:1742–11747CrossRefGoogle Scholar
  108. Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134Google Scholar
  109. Hedgecock D (2004) Quantifying and minimizing risk that hatchery-enhancement will reduce genetic diversity of white seabass. Final report, California Sea Grant College Program, University of California, San Diego. http://repositories.cdlib.org/csgc/rcr/Fisheries04_03
  110. Hedgecock D, Coykendall K (2007) Genetic risks of marine hatchery enhancement: the good, the bad, and the unknown. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Springer, Dordrecht, pp 85–101CrossRefGoogle Scholar
  111. Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002CrossRefGoogle Scholar
  112. Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210PubMedCrossRefGoogle Scholar
  113. Helson JG, Gardner JPA (2004) Contrasting patterns of mussel abundance at neighbouring sites: does recruitment limitation explain the absence of mussels on Cook Strait (New Zealand) shores? J Exp Mar Biol Ecol 312:285–298CrossRefGoogle Scholar
  114. Hendry AP, Kinnison MT, Heino M et al (2011) Evolutionary principles and their practical application. Evol Appl 4:159–183PubMedPubMedCentralCrossRefGoogle Scholar
  115. Heppell SS, Crowder LB (1998) Prognostic evaluation of enhancement programs using population models and life history analysis. Bull Mar Sci 62:495–507Google Scholar
  116. Herrnkind WF, Cobb JS (2007) Artificial shelters for clawed and spiny lobsters: a critical review of enhancement efforts. Am Fish Soc Symp 49:587–594Google Scholar
  117. Heslinga GA, Orak O, Ngiramengior M (1984) Coral reef sanctuaries for Trochus shells. Mar Fish Rev 46:73–80Google Scholar
  118. Hilborn R (1998) The economic performance of marine stock enhancement projects. Bull Mar Sci 62:661–674Google Scholar
  119. Hilborn R, Quinn T, Schindler D, Rogers D (2003) Biocomplexity and fisheries sustainability. Proc Natl Acad Sci USA 100:6564–6568PubMedPubMedCentralCrossRefGoogle Scholar
  120. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4:e1000008PubMedPubMedCentralCrossRefGoogle Scholar
  121. Hines AH, Johnson EG, Young AC, Aguilar R, Kramer MA, Goodison M, Zmora O, Zohar Y (2008) Release strategies for estuarine species with complex migratory life cycles: stock enhancement of Chesapeake blue crabs (Callinectes sapidus). Rev Fish Sci 16:175–185CrossRefGoogle Scholar
  122. Hoban S, Hauffe HC, Pérez-Espona S, Arntzen JW, Bertorelle JW, Bryja J, Frith K et al (2013) Bringing genetic diversity to the forefront of conservation policy and management. Conserv Genet Resour 5:593–598CrossRefGoogle Scholar
  123. Hoban S, Arntzen JA, Bruford MW et al (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7:984–998PubMedPubMedCentralCrossRefGoogle Scholar
  124. Hoffman AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14:96–101CrossRefGoogle Scholar
  125. Hold N, Murray LG, Kaiser MJ, Hinz H, Beaumont AR, Taylor MI (2013) Potential effects of stock enhancement with hatchery-reared seed on genetic diversity and effective population size. Can J Fish Aquat Sci 70:330–338CrossRefGoogle Scholar
  126. Hopper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  127. Howell BR (1994) Fitness of hatchery-reared fish for survival in the sea. Aquac Fish Manag 25(supplement):3–17Google Scholar
  128. Hughes TP (1990) Recruitment limitation, mortality, and population regulation in open systems: a case study. Ecology 71:12–20CrossRefGoogle Scholar
  129. Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a sea grass ecosystem to disturbance. Proc Natl Acad Sci USA 101:8998–9002PubMedPubMedCentralCrossRefGoogle Scholar
  130. Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623PubMedCrossRefGoogle Scholar
  131. Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruiting of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301CrossRefGoogle Scholar
  132. Hutchings JA (2005) Life history consequences of overexploitation to population recovery in Northwest Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 62:824–832CrossRefGoogle Scholar
  133. Hutchings JA (2014) Renaissance of a caveat: Allee effects in marine fish. ICES J Mar Sci 71:2152–2157CrossRefGoogle Scholar
  134. Hutchings JA, Swain DP, Rowe S, Eddington JD, Puvanendran V, Brown JA (2007) Genetic variation in life-history reaction norms in marine fish. Proc R Soc B 274:1693–1699PubMedPubMedCentralCrossRefGoogle Scholar
  135. Hutchings JA, Butchart SHM, Collen B, Schwartz MK, Waples RS (2012) Red flags: correlates of impaired species recovery. Trends Ecol Evol 27:542–546PubMedCrossRefGoogle Scholar
  136. Iles TC, Beverton RJH (2000) The concentration hypothesis: the statistical evidence. ICES J Mar Sci 57:216–227CrossRefGoogle Scholar
  137. Jackson JBC, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638PubMedCrossRefGoogle Scholar
  138. Jasper JR, Habicht C, Moffitt S, Brenner R, Marsh J, Lewis B, Creelman Fox E et al (2013) Source-sink estimates of genetic introgression show influence of hatchery strays on wild chum salmon populations in Prince William Sound, Alaska. PLoS ONE 8(12):e81916PubMedPubMedCentralCrossRefGoogle Scholar
  139. Jennings S, Greenstreet SPR, Reynolds JD (1999) Structural change in an exploited fish community: a consequence of differential fishing effects on species with contrasting life histories. J Anim Ecol 68:617–627CrossRefGoogle Scholar
  140. Jensen JD, Foll M, Bernatchez L (2016) The past, present and future of genomic scans for selection. Mol Ecol 25:1–4PubMedCrossRefGoogle Scholar
  141. Johnson EG, Hines AH, Kramer MA, Young AC (2008) Importance of season and size of release to stocking success for the blue crab in Chesapeake Bay. Rev Fish Sci 16:243–253CrossRefGoogle Scholar
  142. Jorde PE, Søvik G, Westgaard J-I, Albretsen J, André C, Hvingel C, Johansen T et al (2015) Genetically distinct populations of northern shrimp Pandalis borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor. Mol Ecol 24:1742–1757PubMedCrossRefGoogle Scholar
  143. Jøstad KE, Prodöhl PA, Kristiansen TS, Hughes M, Farestveit E, Taggart JB, Agnalt A-L et al (2005) Communal larval rearing of European lobster (Homarus gammarus): family identification by microsatellite DNA profiling and offspring fitness comparisons. Aquaculture 247:275–285CrossRefGoogle Scholar
  144. Kahilainen A, Puurtinen M, Kotiaho JS (2014) Conservation implications of species-genetic diversity correlations. Glob Ecol Conserv 2:315–323CrossRefGoogle Scholar
  145. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  146. Karlson RH, Levitan DR (1990) Recruitment-limitation in open populations of Diadema antillarum: an evaluation. Oecologia 82:40–44PubMedCrossRefGoogle Scholar
  147. Karlsson S, Saillant E, Bumguardner BW, Vega RR, Gold JR (2008) Genetic identification of hatchery-released red drum in Texas bays and estuaries. N Am J Fish Manag 28:1294–1304CrossRefGoogle Scholar
  148. Karlsson S, Diserud OH, Fiske P, Hindar K (2016) Widespread genetic introgression of escaped farmed Atlantic salmon in wild salmon populations. ICES J Mar Sci 73:2488–2498CrossRefGoogle Scholar
  149. Keller L, Reeve HK (1994) Partitioning of reproduction in animal societies. Trends Ecol Evol 9:98–103PubMedCrossRefGoogle Scholar
  150. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  151. Kirk RA (1987) A history of marine fish culture in Europe and North America. Fishing News Books, OxfordGoogle Scholar
  152. Kitada S, Kishino H (2006) Lessons learned from Japanese marine finfish stock enhancement programmes. Fish Res 80:101–112CrossRefGoogle Scholar
  153. Kitada S, Taga Y, Kishino H (1992) Effectiveness of stock enhancement program evaluated by a two-stage sampling survey of commercial landings. Can J Fish Aquat Sci 49:1573–1582CrossRefGoogle Scholar
  154. Kitada S, Shishidou H, Sugaya T, Kitakado T, Hamasaki K, Kishino H (2009) Genetic effects of long-term stock enhancement programs. Aquaculture 290:69–79CrossRefGoogle Scholar
  155. Kostow KE (2004) Differences in juvenile phenotypes and survival between hatchery stocks and a natural population provide evidence for modified selection due to captive breeding. Can J Fish Aquat Sci 61:577–589CrossRefGoogle Scholar
  156. Kuparinen A, Kieth DM, Hutchings JA (2014) Allee effect and the uncertainty of population recovery. Conserv Biol 28:790–798PubMedCrossRefGoogle Scholar
  157. Lamichhaney S, Martinez Barrio A, Rafati N et al (2012) Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc Natl Acad Sci USA 109:19345–19350PubMedPubMedCentralCrossRefGoogle Scholar
  158. Lande R (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99:541–553PubMedPubMedCentralGoogle Scholar
  159. Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563PubMedCrossRefGoogle Scholar
  160. Law R (2000) Fishing, selection, and phenotypic evolution. ICES J Mar Sci 57:659–668CrossRefGoogle Scholar
  161. Le Moan A, Gagnaire PA, Bonhomme F (2016) Parallel genetic divergence among coastal–marine ecotype pairs of European anchovy explained by differential introgression after secondary contact. Mol Ecol 25:3187–3202PubMedCrossRefGoogle Scholar
  162. Le Vay L, Carvalho GR, Quinitio ET, Lebata JH, Ut VN, Fushimi H (2007) Quality of hatchery-reared juveniles for marine fisheries enhancement. Aquaculture 268:168–180Google Scholar
  163. Leber KM (2004) Summary of case studies of the effectiveness of stocking aquacultured fishes and invertebrates to replenish and enhance coastal fisheries. In: Bartley DM, Leber KM (eds) Marine Ranching, FAO Fish Technical Papers 429, pp 203–213Google Scholar
  164. Leber KM, Brennan NP, Arce SM (1995) Marine enhancement with striped mullet: are hatchery releases replenishing or displacing wild stocks? Am Fish Soc Symp 15:376–387Google Scholar
  165. Leber KM, Brennan NP, Arc SM (1998) Recruitment patterns of cultured juvenile Pacific threadfin, Polydactylus sexfilis (Polynemidae), released along sandy marine shores in Hawaii. Bull Mar Sci 62:389–408Google Scholar
  166. Leggett WC, Frank KT (1997) A comparative analysis of recruitment variability in North Atlantic flatfishes—testing the species range hypothesis. J Sea Res 37:281–299CrossRefGoogle Scholar
  167. Leverone JR, Geiger SP, Stephenson SP, Arnold WS (2010) Increase in bay scallop (Argopecten irradians) populations following releases of competent larvae in two west Florida estuaries. J Shellfish Res 29:395–406CrossRefGoogle Scholar
  168. Liao IC (2000) The state of finfish diversification in Asian aquaculture. Cah Opt Méd 47:109–125Google Scholar
  169. Liermann M, Hilborn R (1997) Depensation in fish stocks: a hierarchic Bayesian meta-analysis. Can J Fish Aquat Sci 54:1976–1984CrossRefGoogle Scholar
  170. Lind CE, Evans BS, Knauer J, Taylor JJU, Jerry DR (2009) Decreased genetic diversity and a reduced effective population size in cultured silver-lipped pearl oysters (Pinctada maxima). Aquaculture 286:12–19CrossRefGoogle Scholar
  171. Link JS (2002) What does ecosystem-based fisheries management mean? Fisheries 27:18–21CrossRefGoogle Scholar
  172. Linnane A, Mercer JP (1998) A comparison of methods for tagging juvenile lobsters (Homarus gammarus L.) reared for stock enhancement. Aquaculture 163:195–202CrossRefGoogle Scholar
  173. Lipicius RN, Schreiber S, Wang H, Shen J, Sisson M (2008) Metapopulation source-sink dynamics and stock enhancement of marine species. Rev Fish Sci 16:101–110CrossRefGoogle Scholar
  174. Longhurst A (2010) Mismanagement of marine fisheries. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  175. Lorenzen K (2000) Allometry of natural mortality as a basis for assessing optimal release size in fish-stocking programmes. Can J Fish Aquat Sci 57:2374–2381CrossRefGoogle Scholar
  176. Lorenzen K (2005) Population dynamics and potential of fisheries stock enhancement: practical theory for assessment and policy analysis. Philos Trans R Soc B 360:171–189CrossRefGoogle Scholar
  177. Lorenzen K (2006) Population management in fisheries enhancement: gaining key information from release experiments through use of a size-dependent mortality model. Fish Res 80:19–27CrossRefGoogle Scholar
  178. Lorenzen K (2008) Understanding and managing enhancement fisheries systems. Rev Fish Sci 16:10–23CrossRefGoogle Scholar
  179. Lorenzen K, Leber KM, Blankenship HL (2010) Responsible approach to marine stock enhancement: an update. Rev Fish Sci 18:189–210CrossRefGoogle Scholar
  180. Luttikhuizen PC, Drent J, van Delden W, Piersma T (2003) Spatially structure genetic variation in a broadcast spawning bivalve: quantitative vs. molecular traits. J Evol Biol 16:260–272PubMedCrossRefGoogle Scholar
  181. Lynch M, O’Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conserv Genet 2:363–378CrossRefGoogle Scholar
  182. Lynch M, Conery J, Bürger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518CrossRefGoogle Scholar
  183. Macaranas J, Fujio Y (1990) Strain differences in cultured fish–isozymes and performance traits as indicators. Aquaculture 85:69–82CrossRefGoogle Scholar
  184. MacCall AD (1990) Dynamic geography of marine fish populations. University of Washington Press, SeattleGoogle Scholar
  185. Mannion AM (1999) Domestication and the origins of agriculture: an appraisal. Prog Phys Geogr 23:37–56CrossRefGoogle Scholar
  186. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  187. Martin-Robichaud DJ, Haché R, Pernet F, Ritchie R (2007) Genomic evaluation of haddock (Melanogrammus aeglefinus L.) broodstock. Can Tech Rep Fisher Aquat Sci 2704:iv+10Google Scholar
  188. Masuda R, Tsukamoto K (1998) Stock enhancement in Japan: review and perspective. Bull Mar Sci 62:337–358Google Scholar
  189. Matthews B, Narwani A, Hausch S et al (2011) Toward an integration of evolutionary biology and ecosystem science. Ecol Lett 14:690–701PubMedCrossRefGoogle Scholar
  190. McCay BJ (1988) Muddling through the clam beds: cooperative management of New Jersey’s hard clam spawner sanctuaries. J Shellfish Res 7:327–340Google Scholar
  191. McCusker MR, Bentzen P (2010) Positive relationships between genetic diversity and abundance in fishes. Mol Ecol 19:4852–4862PubMedCrossRefGoogle Scholar
  192. McEachron LW, Colura RL, Bumguardner BW, Ward R (1998) Survival of stocked red drum in Texas. Bull Mar Sci 62:359–368Google Scholar
  193. Mgaya YD, Gosling EM, Mercer JP, Donlon J (1995) Genetic variation at three polymorphic loci in wild and hatchery stocks of the abalone, Haliotis tuberculata Linnaeus. Aquaculture 136:71–80CrossRefGoogle Scholar
  194. Milbury CA, Meritt DW, Newell RIE, Gaffney PM (2004) Mitochondrial DNA markers allow monitoring of oyster stock enhancement in the Chesapeake Bay. Mar Biol 145:351–359CrossRefGoogle Scholar
  195. Mimura M, Yahara T, Faith DP, Vázquez-Dominguez E, Colautti RI et al (2017) Understanding and monitoring the consequences of human impacts of intraspecific variation. Evol Appl 10:121–139PubMedCrossRefGoogle Scholar
  196. Miyazaki T, Masuda R, Furutra S, Tsukamoto K (2000) Feeding behaviour of hatchery-eared juveniles of the Japanese flounder following a period of starvation. Aquaculture 190:129–138CrossRefGoogle Scholar
  197. Mobrand LE, Barr J, Blankenship L, Campton DE, Evelyn TT, Flagg TA, Mahnken CV, Seeb LW, Seidel PR, Smoker WW (2005) Hatchery reform in Washington State: principles and emerging issues. Fisheries 30:11–23CrossRefGoogle Scholar
  198. Moksness E, Stole R, van der Meeren G (1998) Profitability analysis of sea ranching with Atlantic salmon (Salmo salar), Arctic charr (Salvelinus alpinus) and European lobster (Homarus gammarus) in Norway. Bull Mar Sci 62:689–699Google Scholar
  199. Molony BW, Lenanton R, Jackson G, Norriss J (2004) Stock enhancement as a fisheries management tool. Rev Fish Biol Fish 13:409–432CrossRefGoogle Scholar
  200. Montes I, Iriondo M, Manzano C, Santis M, Conklin D, Carvalho G, Irigoien X et al (2016) No loss of genetic diversity in the exploited and recently collapsed population of Bay of Biscay anchovy (Engaulis encrasicholus, L.). Mar Biol 163:1–10CrossRefGoogle Scholar
  201. Morgan LE, Botsford LW (2001) Managing with reserves: modeling uncertainty in larval dispersal for a sea urchin fishery. In: Spatial processes and management of marine populations. Alaska Sea Grant College Program, Fairbanks, AlaskaGoogle Scholar
  202. Morgan SG, Fisher JL, Mace AJ (2009) Larval recruitment in a region of strong, persistent upwelling and recruitment limitation. Mar Ecol Prog Ser 394:79–99CrossRefGoogle Scholar
  203. Moya-Laraño J (2011) Genetic variation, predator-prey interactions and food web structure. Philos Trans R Soc B 366:1425–1437CrossRefGoogle Scholar
  204. Munro JL, Bell JD (1997) Enhancement of marine fisheries resources. Rev Fish Sci 5:185–222CrossRefGoogle Scholar
  205. Mustafa S, Saad S, Rahman RA (2003) Species studies in sea ranching: an overview and economic perspectives. Rev Fish Biol Fish 13:165–175CrossRefGoogle Scholar
  206. Naish KA, Taylor JE, Levin PS, Quinn TP, Winton JP, Huppert D, Hilborn R (2008) An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Adv Mar Biol 53:61–194CrossRefGoogle Scholar
  207. Nakajima K, Kitada S, Habara Y, Sano S, Yokoyama E, Sugaya T, Iwamoto A et al (2014) Genetic effects of marine stock enhancement: a case study based on the highly piscivorous Japanese Spanish mackerel. Can J Fish Aquat Sci 71:301–314CrossRefGoogle Scholar
  208. Nash CE (2011) The history of aquaculture. Wiley, AmesCrossRefGoogle Scholar
  209. Navarrete SA, Weiters EA, Broitman BR, Castilla JC (2005) Scales of benthic-pelagic coupling and the intensity of species interactions: from recruitment limitation to top-down control. Proc Natl Acad Sci USA 102:18046–18051PubMedPubMedCentralCrossRefGoogle Scholar
  210. Neill WH, Miller JM, van der Veer HW, Weinmiller KO (1994) Ecophysiology of marine fish recruitment: a conceptual framework for understanding interannual variability. Neth J Sea Res 32:135–152CrossRefGoogle Scholar
  211. Nicosia F, Lavalli K (1999) Homarid lobster hatcheries: their history and role in research, management, and aquaculture. Mar Fish Rev 61:1–57Google Scholar
  212. Nielsen EE, Bach LA, Kotlicki P (2006) Hybidlab (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973CrossRefGoogle Scholar
  213. Nielsen EE, Hemmer-Hansen J, Poulsen NA, Loeschcke V, Moen T, Johansen T, Mittelholzer C et al (2009) Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol Biol 9:276PubMedPubMedCentralCrossRefGoogle Scholar
  214. Novel P, Porta J, Fernández J, Méndez T, Gallardo-Gálvez JB (2013) Critical points for the maintenance of genetic variability over a production cycle in the European sea bass, Dicentrarchus labrax. Aquaculture 416–417:8–14CrossRefGoogle Scholar
  215. Ochwada-Doyle F, Loneragan NR, Gray CA, Southers IM, Taylor MD (2012a) Competition between wild and captive-bred Penaeus plebejus and implications for stock enhancement. Mar Ecol Prog Ser 450:115–129CrossRefGoogle Scholar
  216. Ochwada-Doyle F, Loneragan N, Gray C, Southers I, Taylor M (2012b) Complexity affects habitat preference and predation mortality in postlarval Penaeus plebejus: implications for stock enhancement. Mar Ecol Prog Ser 380:161–171CrossRefGoogle Scholar
  217. Okouchi H, Kitada S, Iwamoto A, Fukunaga T (2004) Flounder stock enhancement in Miyako Bay, Japan. FAO Fisheries Technical Paper 429, p 179Google Scholar
  218. Olla BL, Davis MW, Ryer CH (1998) Understanding how the hatchery environment represses or promotes the development of behavioral survival skills. Bull Mar Sci 62:531–550Google Scholar
  219. Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckman U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–935PubMedCrossRefGoogle Scholar
  220. Olsen EM, Knutsen H, Gjøsæter J, Jorde PE, Knutsen JA, Stenseth NC (2008) Small-scale biocomplexity in coastal Atlantic cod supporting a Darwinian perspective on fisheries management. Evol Appl 1:524–533PubMedPubMedCentralCrossRefGoogle Scholar
  221. Olson RR, Olson MH (1989) Food limitation of planktotrophic marine invertebrate larvae: does it control recruitment success? Ann Rev Ecol Syst 20:225–247CrossRefGoogle Scholar
  222. Oosthuizen E, Daan N (1974) Egg fecundity and maturity of North Sea cod, Gadus morhua. Neth J Sea Res 8:378–397CrossRefGoogle Scholar
  223. Ovenden JR, Peel D, Street R et al (2007) The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Mol Ecol 16:127–138PubMedCrossRefGoogle Scholar
  224. Pauly D, Christensen V, Guénette S et al (2002) Towards sustainability in world fisheries. Nature 418:689–695PubMedCrossRefGoogle Scholar
  225. Pauly D, Alder J, Bennett E, Christensen V, Tyedmers P, Watson R (2003) The future for fisheries. Science 302:1359–1361PubMedCrossRefGoogle Scholar
  226. Pearse DE (2016) Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. J Fish Biol 89:2697–2716PubMedCrossRefGoogle Scholar
  227. Perez-Enriquez R, Takagi M, Taniguchi N (1999) Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture 173:413–423CrossRefGoogle Scholar
  228. Perez-Enriquez R, Takaemura M, Tabata K, Taniguchi N (2001) Genetic diversity of red sea bream Pagrus major in western Japan in relation to stock enhancement. Fish Sci 67:71–78CrossRefGoogle Scholar
  229. Pikitch EK, Santora C, Babcock EA et al (2004) Ecosystem-based fishery management. Science 305:346–347PubMedCrossRefGoogle Scholar
  230. Polacheck T (1990) Year around closed areas as a management tool. Nat Res Modell 4:327–354CrossRefGoogle Scholar
  231. Porta J, Porta JM, Cañavate P, Martínez-Rodríguez G, Alvarez MC (2007) Substantial loss of genetic variation in a single generation of Senegalese sole (Solea senegalensis) culture: implications in the domestication process. J Fish Biol 71(Supplement B):223–234CrossRefGoogle Scholar
  232. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  233. Purcell JE, Grover JJ (1990) Predation and food limitation as causes of mortality in larval herring at a spawning ground in British Columbia. Mar Ecol Prog Ser 59:55–61CrossRefGoogle Scholar
  234. Purcell SW, Simutoga M (2008) Spatio-temporal and size-dependent variation in the success of releasing cultured sea cucumbers in the wild. Rev Fish Sci 16:204–214CrossRefGoogle Scholar
  235. Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL (2005) Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Nat Acad Sci USA 102:15942–15947PubMedPubMedCentralCrossRefGoogle Scholar
  236. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103PubMedCrossRefGoogle Scholar
  237. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  238. Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci USA 102:2826–2831PubMedPubMedCentralCrossRefGoogle Scholar
  239. Reynolds LA, McGlathery KJ, Waycott M (2012) Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS ONE 7:e38397PubMedPubMedCentralCrossRefGoogle Scholar
  240. Rhode C, Hepple J-A, Jansen S, Davis T, Vervalle J, Bester-van der Merwe AE, Roodt-Wildig R (2012) A population genetic analysis of abalone domestication events in South Africa: implications for the management of abalone resource. Aquaculture 356–357:235–242CrossRefGoogle Scholar
  241. Roberts CM, Hawkins JP, Gell FR (2005) The role of marine reserves in achieving sustainable fisheries. Philos Trans R Soc B 360:123–132CrossRefGoogle Scholar
  242. Rose KA, Cowan JH, Winemiller KO, Myers RA, Hilborn R (2001) Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish 2:293–327CrossRefGoogle Scholar
  243. Rugger P, Spendani A, Occhipinti G, Fioravanti T, Santojanni A, Leonori I, DeFelice A, Arneri E, Procaccini G, Catanese G, Tičina V, Bonanno A, Cerioni PN, Giovannotti M, Grant WS, Barucchin VC (2016) Biocomplexity in populations of European anchovy in the Adriatic Sea. PLoS ONE 11(4):e0153061CrossRefGoogle Scholar
  244. Ryman N, Laikre L (1991) Effects of supportive breeding on the genetically effective population size. Conserv Biol 5:325–329CrossRefGoogle Scholar
  245. Ryman N, Utter F, Lairkre L (1995) Protection of intraspecific biodiversity of exploited fishes. Rev Fish Biol Fish 5:417–446CrossRefGoogle Scholar
  246. Saillant E, Renshaw MA, Gatlin Lii DM, Neill WH, Vega RR, Gold JR (2009) An experimental assessment of genetic tagging and founder representation in hatchery-reared red drum (Sciaenops ocellatus) used in stock enhancement. J Appl Ichthyol 25:108–113CrossRefGoogle Scholar
  247. Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535CrossRefGoogle Scholar
  248. Schindler D, Hilborn R, Chasco B, Boatright C, Quinn T, Rogers L, Webster M (2010) Population diversity and the portfolio effect in an exploited species. Nature 465:609–613PubMedCrossRefGoogle Scholar
  249. Schlichting CD, Pigliucci M (1998) Phenotypic evolutions: a reaction norm perspective. Sinauer Associates, SunderlandGoogle Scholar
  250. Schmalenbach I, Mehrtens F, Janke M, Buchholz F (2011) A mark-recapture study of hatchery-reared juvenile European lobsters, Homarus gammarus, released at the rocky island of Hegoland (German Bight, North Sea) from 2000 to 2009. Fish Res 108:22–30CrossRefGoogle Scholar
  251. Secor DH, Houde ED (1998) Use of larval stocking in restoration of Chesapeake Bay striped bass. ICES J Mar Sci 55:228–239CrossRefGoogle Scholar
  252. Secor DH, Hines AH, Place AR (2002) Japanese hatchery-based stock enhancement: lessons for the Chesapeake Bay blue crab. Publication Number UM-SG-TS-2002-02, Maryland Sea Grant Program, College Park, MD, p 46Google Scholar
  253. Segovia-Viadero M, Serrão EA, Canteras-Jordana JC, Gonzalez-Wangüemert M (2016) Do hatchery-reared sea urchins pose a threat to genetic diversity in wild populations? Heredity 116:378–383PubMedPubMedCentralCrossRefGoogle Scholar
  254. Seitz RD, Lipcius RN, Knick K, Seebo M, Long WC (2008) Stock enhancement and carrying capacity of blue crab nursery habitats in Chesapeake Bay. Rev Fish Sci 16:329–337CrossRefGoogle Scholar
  255. Sekino M, Hara M, Taniguchi N (2002) Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture 213:101–122CrossRefGoogle Scholar
  256. Sekino M, Saitoh K, Yamada T, Kumagai A, Hara M, Yamashita Y (2003) Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture 221:255–263CrossRefGoogle Scholar
  257. Sekino M, Saido T, Fujita T, Kobayashi T, Takami H (2005) Microsatellite DNA markers of ezo abalone (Haliotis discus hannai): a preliminary assessment of natural populations samples from heavily stocked areas. Aquaculture 243:33–47CrossRefGoogle Scholar
  258. Serafy JE, Ault JS, Capo TR, Schultz DR (1999) Red drum, Sciaenops ocellatus L., stock enhancement in Biscayne Bay, FL, USA: assessment of releasing unmarked early juveniles. Aquac Res 30:737–750CrossRefGoogle Scholar
  259. Shanks AL, Roegner GC (2007) Recruitment limitation in Dungeness crab populations is driven by variation in atmospheric forcing. Ecology 88:1726–1737PubMedCrossRefGoogle Scholar
  260. Sharpe DMT, Hendry AP (2009) Life history change in commercially exploited fish stocks: an analysis of trends across studies. Evol Appl 2:260–275PubMedPubMedCentralCrossRefGoogle Scholar
  261. Shelbourne JE (1964) The artificial propagation of marine fish. Adv Mar Biol 2:1–83CrossRefGoogle Scholar
  262. Simpson MR, Walsh SJ (2004) Changes in the spatial structure of Grand Bank yellowtail flounder: testing MacCall’s basin hypothesis. J Sea Res 51:199–210CrossRefGoogle Scholar
  263. Smedstad OM, Salvanes AGV, Fosså JH, Nordeide JT (1994) Enhancement of cod, Gadus morhua L. in Masfjorden: an overview. Aquac Fish Manag 25:117–128Google Scholar
  264. Smith PJ, Francis R, McVeagh M (1991) Loss of genetic diversity due to fishing pressure. Fish Res 10:309–316CrossRefGoogle Scholar
  265. Solemdal P, Dahl E, Danielssen DS, Moksness E (1984) The cod hatchery in Flødevigen – background and realities. In: Dahl E, Danielssen DS, Moksness E, Solemdal P (eds) The propagation of cod, Flødevigen rapportser, Arendal, Norway, pp 17–45Google Scholar
  266. Sproul JT, Tominaga O (1992) An economic review of the Japanese flounder stock enhancement project in Ishikari Bay, Hokkaido. Bull Mar Sci 5:75–88Google Scholar
  267. Stoner AW, Davis M (1994) Experimental outplanting of juvenile queen conch, Strombus gigas: comparison of wild and hatchery reared stocks. Fish Bull US 92:390–411Google Scholar
  268. Stoner AW, Ray-Culp M (2000) Evidence for Allee effects in an over-harvested marine gastropod: density-dependent mating and egg production. Mar Ecol Prog Ser 202:297–302CrossRefGoogle Scholar
  269. Støttrup JG, Sparrevohn CR (2007) Can stock enhancement enhance stocks? J Sea Res 57:104–113CrossRefGoogle Scholar
  270. Straus KM, Vadopalas B, Davis JP, Friedman CS (2015) Reduced genetic variation and decreased effective number of breeders in five year-classes of cultured geoducks (Panopea generosa). J Shellfish Res 34:163–169CrossRefGoogle Scholar
  271. Stunz GW, Levin PS, Minello TJ (2001) Selection of estuarine nursery habitats by wild-caught and hatchery-reared juvenile red drum in laboratory mesocosms. Environ Biol Fish 61:305–313CrossRefGoogle Scholar
  272. Sugaya T, Sato M, Yokoyama E, Nemoto Y, Fujita T, Okouchi H, Hamasaki K et al (2008) Population genetic structure and variability of Pacific herring Clupea pallasii in the stocking area along the Pacific coast of northern Japan. Fish Sci 74:579–588CrossRefGoogle Scholar
  273. Sun X, Hedgecock D (2017) Temporal genetic change in North American Pacific oyster populations suggests caution in seascape genetics analyses of high gene-flow species. Mar Ecol Prog Ser 565:79–93CrossRefGoogle Scholar
  274. Suquet A, Malo F, Quere C, Ledu C, LeGrand J et al (2016) Gamete quality in triploid Pacific oyster (Crasostrea gigas). Aquaculture 451:11–15CrossRefGoogle Scholar
  275. Sussarellu R, Huvet A, Lepègue S, Quillen V, Lelong C, Cornette F, Jensen LF et al (2015) Additive transcriptomic variation associated with reproductive traits suggest local adaptation in a recently settled population of Pacific oyster, Crassostrea gigas. BMC Genom 16:808CrossRefGoogle Scholar
  276. Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812PubMedCrossRefGoogle Scholar
  277. Svåsand T, Skilbrei OT, van der Meeren GI, Holm M (1989) Review of morphological and behavioural differences between reared and wild individuals: implications for sea-ranching of Atlantic salmon, Salmo salar L., Atlantic cod, Gadus morhua L. and European lobster, Homarus gammarus L. Fish Manag Ecol 5:1–18Google Scholar
  278. Svåsand T, Kristiansen TS, Pedersen T, Salvanes AGV, Engelsen R, Nævdal G, Nødtvedt M (2000) The enhancement of cod stocks. Fish Fish 1:173–205CrossRefGoogle Scholar
  279. Svåsand T, Agnalt A-L, Skilbrei OT, Bothen J, Heggberget T (2004) An integrated development programme for marine stocking: The Norwegian example. In: Bartley DM, Leber KM (eds) Marine Ranching, FAO Fisheries Technical Paper, No. 429, FAO, Rome, pp 19–72Google Scholar
  280. Svåsand T, Crosetti D, García-Vázquez E, Verspoor E (eds) (2007) Genetic impact of aquaculture activities on native populations. Genimpact final scientific report. EU contract RICA-CT-2005-022802. http://www.imr.no/genimpact/filarkiv/2007/07/genetic_impact_of_aquaculture.pdf/en. Accessed 30 Sept 2014
  281. Swain DP, Hutchings JA, Foote CJ (2004) Environmental and genetic influences on stock identification characters. In: Cadrin SX, Friedland KD, Waldman J (eds) Stock identification methods. Academic Press, New York, pp 43–83Google Scholar
  282. Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Res 8:299–301CrossRefGoogle Scholar
  283. Taniguchi N (2003) Genetic factors in broodstock management for seed production. Rev Fish Biol Fish 13:177–185CrossRefGoogle Scholar
  284. Taniguchi N, Sumantadinata K, Iyama S (1983) Genetic change in the first and second generations of hatchery stock of black seabream. Aquaculture 35:309–320CrossRefGoogle Scholar
  285. Tave D (1993) Genetics for fish hatchery managers. Van Nostrand Reinhold, New YorkGoogle Scholar
  286. Taylor MD, Piola RF (2008) Scale stocking checks to differentiate between wild and hatchery-reared mulloway (Argyosomus japonicus). Fish Manag Ecol 15:211–216CrossRefGoogle Scholar
  287. Taylor MD, Palmer PJ, Fielder DS, Southers IM (2005) Responsible estuarine finfish stock enhancement: an Australian perspective. J Fish Biol 67:329–331CrossRefGoogle Scholar
  288. Tegner MJ, Butler RA (1989) Abalone seeding. In: Hahn K (ed) Handbook of culture of abalone and other marine gastropods. CRC Press, Boca Raton, pp 157–182Google Scholar
  289. Teletchea F, Fontaine P (2014) Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish 15:181–195CrossRefGoogle Scholar
  290. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000PubMedPubMedCentralCrossRefGoogle Scholar
  291. Trimble AC, Ruesink JL, Dumbauld BR (2009) Factors preventing the recovery of historically overexploited shellfish species, Ostrea lurida Carpenter 1864. J Shellfish Res 28:97–106CrossRefGoogle Scholar
  292. Tringali MD (2006) A Bayesian approach for the genetic tracking of cultured and released individuals. Fish Res 77:159–172CrossRefGoogle Scholar
  293. Tringali MD, Bert TM (1998) Risk to genetic effective population size should be an important consideration in fish stock-enhancement programs. Bull Mar Sci 62:641–659Google Scholar
  294. Tringali MD, Seyoum S, Wallace EM et al (2008) Limits to the use of contemporary genetic analyses in delineating biological populations for restocking and stock enhancement. Rev Fish Sci 16:111–116CrossRefGoogle Scholar
  295. Turner TF, Richardson LR, Gold JR (1999) Temporal genetic variation of mitochondrial DNA and the female effective population size of red drum (Sciaenops ocellatus) in northern Gulf of Mexico. Mol Ecol 8:1223–1229CrossRefGoogle Scholar
  296. Turner TF, Wares JP, Gold JR (2002) Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus). Genetics 162:1329–1339PubMedPubMedCentralGoogle Scholar
  297. Uthicke S, Purcell S (2004) Preservation of genetic diversity in restocking of the sea cucumber Holothuria scabra investigated by allozyme electrophoresis. Can J Fish Aquat Sci 61:519–528CrossRefGoogle Scholar
  298. van der Meeren G (2000) Predation on hatchery-reared lobsters released into the wild. Can J Fish Aquat Sci 57:1794–1803CrossRefGoogle Scholar
  299. Vellend M (2006) The consequences of genetic diversity in competitive communities. Ecology 87:304–311PubMedCrossRefGoogle Scholar
  300. Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781CrossRefGoogle Scholar
  301. Vigne J-D (2011) The origins of animal domestication and husbandry: a major change in the history of humanity and the biosphere. Compt Rend Biol 334:171–181CrossRefGoogle Scholar
  302. Wahle RA (2003) Revealing stock–recruitment relationships in lobsters and crabs: is experimental ecology the key? Fish Res 65:3–32CrossRefGoogle Scholar
  303. Wahle RA, Incze LS (1997) Pre- and post-settlement processes in recruitment of the American lobster. J Exp Mar Biol Ecol 217:179–207CrossRefGoogle Scholar
  304. Walters CJ, Juanes F (1993) Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Can J Fish Aquat Sci 50:2058–2070CrossRefGoogle Scholar
  305. Wang L, Liu S, Zhuang Z, Guo L, Meng Z, Lin H (2013) Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis). PLoS ONE 8:e83493PubMedPubMedCentralCrossRefGoogle Scholar
  306. Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size. Heredity 117:193–206PubMedCrossRefGoogle Scholar
  307. Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756PubMedCrossRefGoogle Scholar
  308. Waples RS, Drake J (2004) Risk-benefit considerationfor marine stock enhancement: a Pacific salmon perspective. In: Leber KM, Kitada S, Blankenship HL, Svåsand T (eds) Stock enhancement and sea ranching, 2nd edn. Blackwell, Oxford, pp 160–306Google Scholar
  309. Waples RS, Hindar K, Hard JJ (2012) Genetic risks associated with marine aquaculture. NOAA Technical Memorandum NMFS-NWFSC-119, Seattle, WAGoogle Scholar
  310. Waples RS, Hindar K, Karlsson S, Hard JJ (2016) Evaluating the Ryman–Laikre effect for marine stock enhancement and aquaculture. Curr Zool 62:617–627CrossRefGoogle Scholar
  311. Welcomme RL, Bartley DM (1998) An evaluation of present techniques for the enhancement of fisheries. FAO Fisheries Technical Paper 374, RomeGoogle Scholar
  312. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523PubMedCrossRefGoogle Scholar
  313. Whitham TG, DeFazio SP, Schweitzer JA, Shuster SM, Allan GJ, Bailey JK, Woolbright SA (2008) Extending genomics to natural communities and ecosystems. Science 320:492–495PubMedCrossRefGoogle Scholar
  314. Wilson JA, Langton RW, Van Orsdel C (1998) A model for the preliminary analysis of the economic feasibility of Atlantic cod enhancement in the Gulf of Maine (USA). Bull Mar Sci 62:675–687Google Scholar
  315. Wolf JB (2003) Genetic architecture and evolutionary constraint when the environment contains genes. Proc Natl Acad Sci USA 100:4655–4660PubMedPubMedCentralCrossRefGoogle Scholar
  316. Wolf JB, Brodie ED III, Cheverud JM, Moore AJ, Wade MJ (1998) Evolutionary consequences of indirect genetic effects. Trends Ecol Evol 13:64–69PubMedCrossRefGoogle Scholar
  317. Worm B, Barbier EB, Beaumont N et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790PubMedCrossRefGoogle Scholar
  318. Xiao J, Cordes JF, Moss JA, Reece KS (2011) Genetic diversity in U.S. hatchery stocks of Crassostrea ariakensis (Fujita, 1913) and comparison with natural populations in Asia. J Shellfish Res 30:751–760CrossRefGoogle Scholar
  319. Ye Y, Loneragan N, Die D, Watson R, Harch B (2005) Bioeconomic modelling and risk assessment of tiger prawn (Penaeus esculentus) stock enhancement in Exmouth Gulf, Australia. Fish Res 73:231–249CrossRefGoogle Scholar
  320. Young AC, Johnson EG, Hines AH, Davis J, Zmora O, Zohar Y (2008) Do hatchery reared blue crabs differ from wild crabs, and does it matter? Rev Fish Sci 16:254–261CrossRefGoogle Scholar
  321. Yu DH, Chu KH (2006) Genetic variation in wild and cultured populations of the pearl oyster Pinctada fucata from southern China. Aquaculture 258:220–227CrossRefGoogle Scholar
  322. Zeder MA (2006) Documenting domestication: new genetic and archaeological paradigms. University of California Press, BerkeleyGoogle Scholar
  323. Zohar Y, Hines AH, Zmora O, Johnson EG, Lipcius RN, Seitz RD, Eggleston DB (2008) The Chesapeake Bay blue crab (Callinectes sapidus): a multidisciplinary approach to responsible sock replenishment. Rev Fish Sci 16:24–34CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • W. Stewart Grant
    • 1
  • James Jasper
    • 1
  • Dorte Bekkevold
    • 2
  • Milo Adkison
    • 3
  1. 1.Division of Commercial FisheriesAlaska Department of Fish and GameAnchorageUSA
  2. 2.Institut for Akvatiske RessourcerDanmarks Tekniske UniversitetSilkeborgDenmark
  3. 3.Juneau Center, School of Fisheries and Ocean SciencesUniversity of Alaska FairbanksJuneauUSA

Personalised recommendations