Skip to main content

Advertisement

Log in

Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America

  • Research Paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahams MV, Kattenfeld MG (1997) The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behav Ecol Sociobiol 40:169–174. doi:10.1007/s002650050330

    Article  Google Scholar 

  • Adrian R et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. doi:10.4319/lo.2009.54.6_part_2.2283

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson KR, Chapman DC, Wynne TT, Masagounder K, Paukert CP (2015) Suitability of Lake Erie for bigheaded carps based on bioenergetic models and remote sensing. J Gt Lakes Res 41:358–366. doi:10.1016/j.jglr.2015.03.029

    Article  Google Scholar 

  • Arend KK et al (2010) Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshw Biol 56:366–383. doi:10.1111/j.1365-2427.2010.02504.x

    Article  Google Scholar 

  • Austin JA, Colman SM (2007) Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys Res Lett. doi:10.1029/2006gl029021

    Google Scholar 

  • Austin J, Colman S (2008) A century of temperature variability in Lake Superior. Limnol Oceanogr 53:2724–2730. doi:10.4319/lo.2008.53.6.2724

    Article  Google Scholar 

  • Bai XZ, Wang J, Schwab DJ, Yang Y, Luo L, Leshkevich GA, Liu SZ (2013) Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM. Ocean Model 65:40–63. doi:10.1016/j.ocemod.2013.02.003

    Article  Google Scholar 

  • Bain MB et al (2010) Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the great lakes and its relationship to shipping. PLoS ONE 5:8. doi:10.1371/journal.pone.0010156

    Google Scholar 

  • Bain MB, Cangelosi A, Eder TA (2011) Monitoring microbes in the Great Lakes. Environ Monit Assess 182:431–442. doi:10.1007/s10661-011-1887-z

    Article  PubMed  Google Scholar 

  • Barbiero RP, Lesht BM, Warren GJ (2011) Evidence for bottom-up control of recent shifts in the pelagic food web of Lake Huron. J Gt Lakes Res 37:78–85

    Article  Google Scholar 

  • Barbiero RP, Lesht BM, Warren GJ (2012) Convergence of trophic state and the lower food web in Lakes Huron, Michigan and Superior. J Gt Lakes Res 38:368–380. doi:10.1016/j.jglr.2012.03.009

    Article  CAS  Google Scholar 

  • Barbiero RP, Lesht BM, Warren GJ (2014) Recent changes in the offshore crustacean zooplankton community of Lake Ontario. J Gt Lakes Res 40:898–910. doi:10.1016/j.jglr.2014.08.007

    Article  Google Scholar 

  • Beeton AM (1965) Eutrophication of the St. Lawrence Great Lakes. Limnol Oceanogr 10:240–254

    Article  Google Scholar 

  • Beeton AM (2002) Large freshwater lakes: present state, trends, and future. Environ Conserv 29:21–38

    Article  CAS  Google Scholar 

  • Beeton AM, Sellinger CE, Reid DF (1999) An introduction to the Laurentian Great Lakes ecosystem. In: Taylor WW, Ferreri CP (eds) Great lakes fisheries policy and management: a binational perspective. Michigan State University Press, East Lansing, pp 3–54

    Google Scholar 

  • Bence JR et al (2003) Sea Lamprey (Petromyzon marinus) parasite-host Interactions in the Great Lakes. J Gt Lakes Res 29:253–282. doi:10.1016/s0380-1330(03)70493-6

    Article  Google Scholar 

  • Bierman VJJ, Dolan DM (1981) Modeling of phytoplankton-nutrient dynamics in Saginaw Bay, Lake Huron. J Gt Lakes Res 7:409–439

    Article  CAS  Google Scholar 

  • Bosch NS, Evans MA, Scavia D, Allan JD (2014) Interacting effects of climate change and agricultural BMPs on nutrient runoff entering Lake Erie. J Gt Lakes Res 40:581–589. doi:10.1016/j.jglr.2014.04.011

    Article  CAS  Google Scholar 

  • Brandt SB, Magnuson JJ, Crowder LB (1980) Thermal habitat partitioning by fishes in Lake Michigan. Canad J Fish Aquat Sci 37:1557–1564

    Article  Google Scholar 

  • Brandt SB, Mason DM, Macneill DB, Coates T, Gannon JE (1987) Predation by alewives on larvae of yellow perch in Lake Ontario. Trans Am Fish Soc 116:641–645. doi:10.1577/1548-8659(1987)116<641:pbaolo>2.0.co;2

    Article  Google Scholar 

  • Brandt SB, Mason DM, McCormick MJ, Lofgren B, Hunter TS, Tyler JA (2002) Climate change: implications for fish growth performance in the Great Lakes. In: McGinn NA (ed) Fisheries in a changing climate. American Fisheries Society Symposium. American Fisheries Society, Symposium 32, Bethesda, pp 61–75

  • Brandt SB et al (2011) Does hypoxia reduce habitat quality for Lake Erie walleye (Sander vitreus)? A bioenergetics perspective. Can J Fish Aquat Sci 68:857–879. doi:10.1139/f2011-018

    Article  Google Scholar 

  • Brenden TO, Brown RW, Ebener MP, Reid K, Newcomb TJ (2012) Great Lakes commercial fisheries: historical overview and prognoses for the future. In: Taylor WW, Lynch AJ, Leonard NJ (eds) Great lakes fisheries policy and management: a binational perspective. Michigan State University Press, East Lansing, pp 339–397

    Google Scholar 

  • Brett JR (1979) Environmental factors and growth. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 8. bioenergetics and growth. Academic Press, New York, pp 599–675

    Google Scholar 

  • Bridgeman TB, Schloesser DW, Krause AE (2006) Recruitment of Hexagenia mayfly nymphs in western Lake Erie linked to environmental variability. Ecol Appl 16:601–611. doi:10.1890/1051-0761(2006)016[0601:rohmni]2.0.co;2

    Article  PubMed  Google Scholar 

  • Bronte CR et al (2003) Fish community change in Lake Superior, 1970–2000. Can J Fish Aquat Sci 60:1552–1574. doi:10.1139/f03-136

    Article  Google Scholar 

  • Brown RW, Taylor WW, Assel RA (1993) Factors affecting the recruitment of lake whitefish in 2 areas of northern Lake Michigan. J Gt Lakes Res 19:418–428

    Article  Google Scholar 

  • Bruneaux M, Visse M, Gross R, Pukk L, Saks L, Vasemagi A (2017) Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Funct Ecol 31:216–226. doi:10.1111/1365-2435.12701

    Article  Google Scholar 

  • Bullerjahn GS et al (2016) Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54:223–238. doi:10.1016/j.hal.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunnell DB, Adams JV, Gorman OT, Madenjian CP, Riley SC, Roseman EF, Schaeffer JS (2010) Population synchrony of a native fish across three Laurentian Great Lakes: evaluating the effects of dispersal and climate. Oecologia 162:641–651. doi:10.1007/s00442-009-1487-6

    Article  PubMed  Google Scholar 

  • Bunnell DB, Davis BM, Warner DM, Chriscinske MA, Roseman EF (2011) Planktivory in the changing Lake Huron zooplankton community: bythotrephes consumption exceeds that of Mysis and fish. Freshw Biol 56:1281–1296. doi:10.1111/j.1365-2427.2010.02568.x

    Article  Google Scholar 

  • Bunnell DB et al (2014) Changing ecosystem dynamics in the Laurentian Great Lakes: bottom-up and top-down regulation. Bioscience 64:26–39. doi:10.1093/biosci/bit001

    Article  Google Scholar 

  • Bunnell DB, Höök TO, Troy CD, Madenjian CP, Adams JV (2016) Synchrony in recruitment among four Lake Michigan fish species, 1973–2011. Canad J Fish Aquat Sci. doi:10.1139/cjfas-2015-0534

    Google Scholar 

  • Burns NM, Rockwell DC, Bertram PE, Dolan DM, Ciborowski JJH (2005) Trends in temperature, Secchi depth, and dissolved oxygen depletion rates in the central basin of Lake Erie, 1983–2002. J Gt Lakes Res 31:35–49

    Article  CAS  Google Scholar 

  • Caddy JF (2000) Marine catchment basin effects versus impacts of fisheries on semi-enclosed seas. ICES J Mar Sci 57:628–640. doi:10.1006/jmsc.2000.0739

    Article  Google Scholar 

  • Carreon-Martinez LB, Wellband KW, Johnson TB, Ludsin SA, Heath DD (2014) Novel molecular approach demonstrates that turbid river plumes reduce predation mortality on larval fish. Mol Ecol 23:5366–5377. doi:10.1111/mec.12927

    Article  CAS  PubMed  Google Scholar 

  • Carreon-Martinez LB, Walter RP, Johnson TB, Ludsin SA, Heath DD (2015) Benefits of turbid river plume habitat for Lake Erie yellow perch (Perca flavescens) recruitment determined by juvenile to larval genotype assignment. PLoS One 10(5):e0125234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casselman JM (2002) Effects of temperature, global extremes, and climate change on year-class production of warmwater, coolwater, and coldwater fishes in the Great Lakes Basin. In: McGinn NA (ed) Fisheries in a changing climate, vol 32. American Fisheries Society Symposium. Amer Fisheries Soc, Bethesda, pp 39–59

    Google Scholar 

  • Chapman DC, Davis JJ, Jenkins JA, Kocovsky PM, Miner JG, Farver J, Jackson PR (2013) First evidence of grass carp recruitment in the Great Lakes Basin. J Gt Lakes Res 39:547–554. doi:10.1016/j.jglr.2013.09.019

    Article  Google Scholar 

  • Chiaramonte L, Munson D, Trushenski J (2016) Climate change and considerations for fish health and fish health professionals. Fisheries 41:396–399. doi:10.1080/03632415.2016.1182508

    Article  Google Scholar 

  • Christie WJ (1963) Effects of artifical propagation and the weather on recruitment in the Lake Ontario whitefish fishery. J Fish Res Board Canada 20:597–646

    Article  Google Scholar 

  • Claramunt RM, Clapp DF (2014) Response to Dettmers et al. (2012): Great Lakes Fisheries managers are pursuing appropriate goals. Fisheries 39:123–125. doi:10.1080/03632415.2014.883968

    Article  Google Scholar 

  • Claramunt RM, Muir AM, Johnson J, Sutton TM (2010) Spatio-temporal trends in the food habits of age-0 lake whitefish. J Gt Lakes Res 36:66–72. doi:10.1016/j.jglr.2010.01.002

    Article  Google Scholar 

  • Cline TJ, Bennington V, Kitchell JF (2013) Climate change expands the spatial extent and duration of preferred thermal habitat for Lake Superior Fishes. PLoS ONE 8:e62279. doi:10.1371/journal.pone.0062279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline TJ, Kitchell JF, Bennington V, McKinley GA, Moody EK, Weidel BC (2014) Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions and invasive species management. Ecosphere 5:art68. doi:10.1890/es14-00059.1

  • Clites AH, Smith JP, Hunter TS, Gronewold AD (2014) Visualizing relationships between hydrology, climate, and water level fluctuations on Earth’s largest system of lakes. J Gt Lakes Res 40:807–811. doi:10.1016/j.jlr.2014.05.014

    Article  Google Scholar 

  • Coble DW (1966) Dependence of total annual growth in yellow perch on temperature. J Fish Res Board Canada 23:15–20

    Article  Google Scholar 

  • Cochran-Biederman JL, Wyman KE, French WE, Loppnow GL (2015) Identifying correlates of success and failure of native freshwater fish reintroductions. Conserv Biol 29:175–186. doi:10.1111/cobi.12374

    Article  PubMed  Google Scholar 

  • Collingsworth PD, Bunnell DB, Madenjian CP, Riley SC (2014) Comparative recruitment dynamics of alewife and bloater in Lakes Michigan and Huron. Trans Am Fish Soc 143:294–309. doi:10.1080/00028487.2013.833986

    Article  Google Scholar 

  • Conroy JD, Kane DD, Dolan DM, Edwards WJ, Charlton MN, Culver DA (2005) Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and dreissenid mussels. J Gt Lakes Res 31:89–110

    Article  CAS  Google Scholar 

  • Cooke SL (2016) Anticipating the spread and ecological effects of invasive bigheaded carps (Hypophthalmichthys spp.) in North America: a review of modeling and other predictive studies. Biol Invasions 18:315–344. doi:10.1007/s10530-015-1028-7

    Article  Google Scholar 

  • Cornwell ER et al (2015) Biological and chemical contaminants as drivers of change in the Great Lakes-St. Lawrence river basin. J Gt Lakes Res 41:119–130. doi:10.1016/j.jglr.2014.11.003

    Article  CAS  Google Scholar 

  • Council of Lake Committees (CLC) GLFCG (2016) Environmental principles for sustainable fisheries in the Great Lakes Basin

  • Cousino LK, Becker RH, Zmijewski KA (2015) Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. J Hydrol Reg Stud 4:762–775

    Article  Google Scholar 

  • Coutant CC (1987) Thermal preference: when does an asset become a liability. Environ Biol Fishes 18:161–172

    Article  Google Scholar 

  • Crane DP, Farrell JM, Einhouse DW, Lantry JR, Markham JL (2015) Trends in body condition of native piscivores following invasion of Lakes Erie and Ontario by the round goby. Freshw Biol 60:111–124. doi:10.1111/fwb.12473

    Article  Google Scholar 

  • Croley TE (1990) Laurentian Great Lakes double-CO2 climate change hydrological impacts. Clim Change 17:27–47. doi:10.1007/bf00148999

    Article  Google Scholar 

  • Cuddington K, Currie WJS, Koops MA (2014) Could an Asian carp population establish in the Great Lakes from a small introduction? Biol Invasions 16:903–917. doi:10.1007/s10530-013-0547-3

    Article  Google Scholar 

  • Dettmers JM, Goddard CI, Smith KD (2012) Management of alewife using Pacific salmon in the Great Lakes: whether to manage for economics or the ecosystem? Fisheries 37:495–501. doi:10.1080/03632415.2012.731875

    Article  Google Scholar 

  • DeVanna-Fussell KM et al (2016) A perspective on needed research, modeling, and management approaches that can enhance Great Lakes fisheries management under changing ecosystem conditions. J Gt Lakes Res. doi:10.1016/j.jglr.2016.04.007

    Google Scholar 

  • Dobiesz NE, Lester NP (2009) Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002. J Gt Lakes Res 35:371–384

    Article  Google Scholar 

  • Dolan DM, Chapra SC (2012) Great Lakes total phosphorus revisited: 1. Loading analysis and update (1994–2008). J Gt Lakes Res 38:730–740

    Article  CAS  Google Scholar 

  • Durant JM, Hjermann DO, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283

    Article  Google Scholar 

  • Epstein E, Bryans M, Mezei D, Patterson D (1974) Lower Green Bay: an evaluation of existing and historical conditions. U.S. Chicago: Environmental Protection Agency, Report EPA-905/9-74-006

  • Escobar LE, Kurath G, Escobar-Dodero J, Craft ME, Phelps NBD (2017) Potential distribution of the viral haemorrhagic septicaemia virus in the Great Lakes region. J Fish Dis 40:11–28. doi:10.1111/jfd.12490

    Article  CAS  PubMed  Google Scholar 

  • Eshenroder RL, Burnham-Curtis MK (1999) Species succession and sustainability of the Great Lakes fish community. In: Taylor WW, Ferreri CP (eds) Great Lakes fisheries policy and management: a binational perspective. Michigan State University Press, East Lansing, pp 145–184

    Google Scholar 

  • Farmer TM, Marschall EA, Dabrowski K, Ludsin SA (2015) Short winters threaten temperate fish populations. Nat Commun 6:7724. doi:10.1038/ncomms8724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613

    Article  Google Scholar 

  • Fielder DG, Schaeffer JS, Thomas MV (2007) Environmental and ecological conditions surrounding the production of large year classes of walleye (Sander vitreus) in Saginaw Bay, Lake Huron. J Gt Lakes Res 33:118–132. doi:10.3394/0380-1330(2007)33[118:eaecst]2.0.co;2

    Article  Google Scholar 

  • Fiksen Ø, Aksnes DL, Flyum MH, Giske J (2002) The influence of turbidity on growth and survival of fish larvae: a numerical analysis. In: Vadstein O, Olsen Y (eds) Sustainable increase of marine harvesting: fundamental mechanisms and new concepts. Springer, Amsterdam, pp 49–59

    Chapter  Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-lattitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  • Freeberg MH, Taylor WW, Brown RW (1990) Effects of egg and larval survival on year-class strength of lake whitefish in Grand Traverse Bay, Lake Michigan. Trans Am Fish Soc 119(1):92–100. doi:10.1577/1548-8659(1990)119<0092:EOEALS>2.3.CO;2

    Article  Google Scholar 

  • Gaden M, Krueger C, Goddard C, Barnhart G (2008) A joint strategic plan for management of Great Lakes fisheries: a cooperative regime in a multi-jurisdictional setting. Aquat Ecosyst Health Manag 11:50–60. doi:10.1080/14634980701877043

    Article  Google Scholar 

  • Gaden M, Goddard C, Read J (2012) Multi-jurisdictional management of the shared Great Lakes fishery: transcending conflict and diffuse political authority. In: Taylor WW, Lynch AJ, Leonard NJ (eds) Great Lakes fisheries policy and management: a binational perspective, 2nd edn. Michigan State University Press, East Lansing, pp 305–337

    Google Scholar 

  • Genner MJ, Halliday NC, Simpson SD, Southward AJ, Hawkins SJ, Sims DW (2010) Temperature-driven phenological changes within a marine larval fish assemblage. J Plankton Res 32:699–708. doi:10.1093/plankt/fbp082

    Article  CAS  Google Scholar 

  • Ghadouani A, Pinel-Alloul B, Prepas EE (2003) Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshw Biol 48:363–381. doi:10.1046/j.1365-2427.2003.01010.x

    Article  Google Scholar 

  • Gobin J, Lester NP, Cottrill A, Fox MG, Dunlop ES (2015) Trends in growth and recruitment of Lake Huron lake whitefish during a period of ecosystem change, 1985 to 2012. J Gt Lakes Res 41:405–414. doi:10.1016/j.jglr.2015.03.003

    Article  Google Scholar 

  • Government of Ontario (2012) Ontario’s Great Lakes strategy

  • Governments of Canada and the United States (2012) Great Lakes water quality agreement—2012. Ottawa and Washington, DC

  • Graham CT, Harrod C (2009) Implications of climate change for the fishes of the British Isles. J Fish Bio 74:1143–1205

    Article  CAS  Google Scholar 

  • Great Lakes Fishery Commission (GLFC) (2007) A joint strategic plan for management of Great Lakes fisheries (adopted in 1997 and supersedes 1981 original). Great Lakes Fish. Comm. Misc. Publ. 2007-01

  • Great Lakes Indian Fish and Wildlife Commission (GLIFWC) (2016) Climate change program. http://www.glifwc.org/ClimateChange/ClimateChange.html

  • Grippo MA, Hlohowskyj I, Fox L, Herman B, Pothoff J, Yoe C, Hayse J (2017) Aquatic Nuisance Species in the Great Lakes and Mississippi River Basin—a risk assessment in support of GLMRIS. Environ Manag 59:154–173. doi:10.1007/s00267-016-0770-7

    Article  Google Scholar 

  • Gronewold AD et al (2015) Impacts of extreme 2013–2014 winter conditions on Lake Michigan’s fall heat content, surface temperature, and evaporation. Geophys Res Lett 42:3364–3370. doi:10.1002/2015gl063799

    Article  Google Scholar 

  • Hale S, Tyson J, Navarro J, Parrett T (2013) Fisheries tactical plan: 2011–2020, update 2. Ohio Department of Natural Resources, Division of Wildlife, Columbus

    Google Scholar 

  • Haney JF (1987) Field studies on zooplankton-cyanobacteria interactions. N Z J Mar Freshw Res 21:467–475

    Article  Google Scholar 

  • Hayes DB (1999) Issues affecting fish habitat in the Great Lakes Basin. In: Taylor WW, Ferreri CP (eds) Great Lakes fisheries policy and management: a binational perspective. Michigan State University Press, East Lansing, pp 209–237

    Google Scholar 

  • Hayhoe K, VanDorn J, Croley T, Schlegal N, Wuebbles D (2010) Regional climate change projections for Chicago and the US Great Lakes. J Gt Lakes Res 36:7–21

    Article  Google Scholar 

  • Headley HC, Lauer TE (2008) Density-dependent growth of yellow perch in southern Lake Michigan, 1984–2004. N Am J Fish Manag 28:57–69

    Article  Google Scholar 

  • Hecky RE, Smith REH, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T (2004) The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Canad J Fish Aquat Sci 61:1285–1293

    Article  CAS  Google Scholar 

  • Higgins SN, Vander Zanden MJ (2010) What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol Monogr 80:179–196. doi:10.1890/09-1249.1

    Article  Google Scholar 

  • Hill DK, Magnuson JJ (1990) Potential effects of global climate warming on the growth and prey consumption of Great Lakes fish. Trans Am Fish Soc 119:265–275. doi:10.1577/1548-8659(1990)119<0265:peogcw>2.3.co;2

    Article  Google Scholar 

  • Honsey AE et al (2016) Recruitment synchrony of yellow perch (Perca flavescens, Percidae) in the Great Lakes region, 1966–2008. Fish Res 181:214–221. doi:10.1016/j.fishres.2016.04.021

    Article  Google Scholar 

  • Hook TO, Rutherford ES, Mason DM, Carter GS (2007) Hatch dates, growth, survival, and overwinter mortality of age-0 alewives in Lake Michigan: implications for habitat-specific recruitment success. Trans Am Fish Soc 136:1298–1312. doi:10.1577/t06-194.1

    Article  Google Scholar 

  • Houde ED (1994) Differences between marine and freshwater fish larvae: implications for recruitment. ICES J Mar Sci 51:91–97. doi:10.1006/jmsc.1994.1008

    Article  Google Scholar 

  • Hoving CL, Lee YM, Badra PJ, Klatt BJ (2013) Changing climate, changing wildlife a vulnerability assessment of 400 species of greatest conservation need and game species in Michigan. Michigan Department of Natural Resources Wildlife Division Report 3564

  • Huff A, Thomas A (2014) Lake Superior climate change impacts and adaptation, prepared for the Lake Superior Lakewide Action and Management Plan—Superior Work Group. http://www.epa.gov/glnpo/lakesuperior/index.html

  • Hunt LM et al (2016) Identifying alternate pathways for climate change to impact inland recreational fishers. Fisheries 41:362–372. doi:10.1080/03632415.2016.1187015

    Article  Google Scholar 

  • IPCC (2000) Special report on emissions scenarios. Cambridge University Press, New York

    Google Scholar 

  • Jacobs GR, Madenjian CP, Bunnell DB, Warner DM, Claramunt RM (2013) Chinook salmon foraging patterns in a changing Lake Michigan. Trans Am Fish Soc 142:362–372. doi:10.1080/00028487.2012.739981

    Article  Google Scholar 

  • Jensen OP, Benson BJ, Magnuson JJ, Card VM, Futter MN, Soranno PA, Stewart KM (2007) Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol Oceanogr 52:2013–2026. doi:10.4319/lo.2007.52.5.2013

    Article  Google Scholar 

  • Jeppesen E et al (2010) Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646:73–90

    Article  CAS  Google Scholar 

  • Johnson TB, Evans DO (1990) Size-dependent winter mortality of young-of-the-year white perch—climate warming and invasion of the Laurentian Great-Lakes. Trans Am Fish Soc 119:301–313. doi:10.1577/1548-8659(1990)119<0301:swmoyw>2.3.co;2

    Article  Google Scholar 

  • Johnson JE, DeWitt SP, Gonder DJA (2010) Mass-marking reveals emerging self regulation of the Chinook salmon population in Lake Huron. N Am J Fish Manag 30:518–529. doi:10.1577/m09-094.1

    Article  Google Scholar 

  • Jones ML, Shuter BJ, Zhao YM, Stockwell JD (2006) Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help. Canad J Fish Aquat Sci 63:457–468. doi:10.1139/f05-239

    Article  Google Scholar 

  • Jude DJ, Pappas J (1992) Fish utilization of Great Lakes coastal wetlands. J Gt Lakes Res 18:651–672

    Article  Google Scholar 

  • Kane DD, Conroy JD, Richards RP, Baker DB, Culver DA (2014) Re-eutrophication of Lake Erie: correlations between tributary nutrient loads and phytoplankton biomass. J Gt Lakes Res 40:496–501. doi:10.1016/j.jglr.2014.04.004

    Article  CAS  Google Scholar 

  • Kao Y-C, Madenjian CP, Bunnell DB, Lofgren BM, Perroud M (2014) Temperature effects induced by climate change on the growth and consumption by salmonines in Lakes Michigan and Huron. Environ Biol Fish 98:1089–1104. doi:10.1007/s10641-014-0352-6

    Article  Google Scholar 

  • Kao Y-C, Madenjian CP, Bunnell DB, Lofgren BM, Perroud M (2015a) Potential effects of climate change on the growth of fishes from different thermal guilds in Lakes Michigan and Huron. J Gt Lakes Res 41:423–435. doi:10.1016/j.jglr.2015.03.012

    Article  Google Scholar 

  • Kao Y-C, Madenjian CP, Bunnell DB, Lofgren BM, Perroud M (2015b) Temperature effects induced by climate change on the growth and consumption by salmonines in Lakes Michigan and Huron. Environ Biol Fishes 98:1089–1104. doi:10.1007/s10641-014-0352-6

    Article  Google Scholar 

  • Keeler KM et al (2015) Evaluating the importance of abiotic and biotic drivers on Bythotrephes biomass in Lakes Superior and Michigan. J Gt Lakes Res 41:150–160. doi:10.1016/j.jglr.2015.07.010

    Article  Google Scholar 

  • King JR, Shuter BJ, Zimmerman AP (1999) Empirical links between thermal habitat, fish growth, and climate change. Trans Am Fish Soc 128:656–665

    Article  Google Scholar 

  • Kling GW, Hayhoe K, Johnson LB, Magnuson JJ, Polasky S, Robinson SK, Shuter BJ, Wander MM, Wuebbles DJ, Zak DR, Lindroth RL (2003) Confronting climate change in the Great Lakes region: impacts on our communities and ecosystems. Union of Concerned Scientists, Cambridge, Massachusetts, and Ecological Society of America, Washington, DC, p 92

  • Kornis MS, Mercado-Silva N, Vander Zanden MJ (2012) Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. J Fish Biol 80:235–285. doi:10.1111/j.1095-8649.2011.03157.x

    Article  CAS  PubMed  Google Scholar 

  • Kratzer JF, Taylor WW, Ferreri CP, Ebener MP (2007) Factors affecting growth of lake whitefish in the upper Laurentian Great Lakes. In: Jankun M, Brzuzan P, Hliwa P, Luczynski M (eds) Biology and management of Coregonid Fishes—2005. Advances in limnology, 60. Schweizerbart Science Publishers, Stuttgart, pp 459–470

  • Krieger KA, Schloesser DW, Manny BA, Trisler CE, Heady SE, Ciborowski JJH, Muth KM (1996) Recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia) in western Lake Erie. J Gt Lakes Res 22:254–263

    Article  CAS  Google Scholar 

  • Kunkel KE, Pielke RA, Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Am Meteorol Soc 80:1077–1098. doi:10.1175/1520-0477(1999)080<1077:tfiwac>2.0.co;2

    Article  Google Scholar 

  • Kunkel KE, Westcott NE, Kristovich DAR (2002) Assessment of potential effects of climate change on heavy lake-effect snowstorms near Lake Erie. J Gt Lakes Res 28:521–536

    Article  Google Scholar 

  • LaBeau M, Mayer A, Griffis V, Watkins D, Robertson D, Gyawali R (2015) The importance of considering shifts in seasonal changes in discharges when predicting future phosphorus loads in streams. Biogeochemistry 126:153–172. doi:10.1007/s10533-015-0149-5

    Article  CAS  Google Scholar 

  • Lake Michigan Fisheries Team (2004) Lake Michigan integrated fisheries management plan 2003–2013. Wisconsin Department of Natural Resources, Bureau of Fisheries Management and Habitat Protection. Wisconsin Department of Natural Resources

  • Lawler GH (1965) Fluctuations in success of year-classes of whitefish populations with special reference to Lake Erie. J Fish Res Board Canada 22:1197

    Article  Google Scholar 

  • Lehman JT (1991) Causes and consequences of cladoceran dynamics in Lake Michigan: implications of species invasion by Bythotrephes. J Gt Lakes Res 17:437–445

    Article  Google Scholar 

  • Lester NP, Dextrase AJ, Kushneriuk RS, Rawson MR, Ryan PA (2004) Light and temperature: key factors affecting walleye abundance and production. Trans Am Fish Soc 133:588–605. doi:10.1577/t02-111.1

    Article  Google Scholar 

  • Litzow MA, Bailey KM, Prahl FG, Heintz R (2006) Climate regime shifts and reorganization of fish communities: the essential fatty acid limitation hypothesis. Mar Ecol Prog Ser 315:1–11. doi:10.3354/meps315001

    Article  CAS  Google Scholar 

  • Lofgren B (2014) Simulation of atmospheric and lake conditions in the Laurentian Great Lakes region using the coupled hydrosphere-atmosphere research model (CHARM). Ann Arbor

  • Lofgren BM, Rouhana J (2016) Physically plausible methods for projecting Great Lakes water levels under climate change scenarios. J Hydrometeorol. doi:10.1175/JHM-D-15-0220.1

    Google Scholar 

  • Lofgren BM, Quinn FH, Clites AH, Assel RA, Eberhardt AJ, Luukkonen CL (2002) Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs. J Gt Lakes Res 28:537–554

    Article  Google Scholar 

  • Lofgren BM, Hunter TS, Wilbarger J (2011) Effects of using air temperature as a proxy for potential evapotranspiration in climate change scenarios of Great Lakes basin hydrology. J Gt Lakes Res 37:744–752. doi:10.1016/j.jglr.2011.09.006

    Article  Google Scholar 

  • Lohmus M, Bjorklund M (2015) Climate change: what will it do to fish-parasite interactions? Biol J Linnean Soc 116:397–411. doi:10.1111/bij.12584

    Article  Google Scholar 

  • Ludsin SA (2000) Exploration of spatiotemporal patterns in recruitment and community organization of Lake Erie fishes: a multiscale, mechanistic approach. Doctoral dissertation, The Ohio State University, Columbus

  • Ludsin SA, Kershner MW, Blocksom KA, Knight RL, Stein RA (2001) Life after death in Lake Erie: nutrient controls drive fish species richness, rehabilitation. Ecol Appl 11:731. doi:10.2307/3061113

    Article  Google Scholar 

  • Ludsin SA, DeVanna KM, Smith REH (2014) Physical-biological coupling and the challenge of understanding fish recruitment in freshwater lakes. Canad J Fish Aquat Sci 71:775–794. doi:10.1139/cjfas-2013-0512

    Article  Google Scholar 

  • Lumb CE, Johnson TB (2012) Retrospective growth analysis of lake whitefish (Coregonus clupeaformis) in Lakes Erie and Ontario, 1954–2003. In: Biology and management of coregonid fishes—2008, vol 63. Advances in limnology, pp 429–454

  • Lynch AJ, Taylor WW, Beard TD, Lofgren BM (2015) Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes. J Gt Lakes Res 41:415–422. doi:10.1016/j.jglr.2015.03.015

    Article  Google Scholar 

  • Lynch AJ et al (2016) Climate change effects on North American Inland fish populations and assemblages. Fisheries 41:346–361. doi:10.1080/03632415.2016.1186016

    Article  Google Scholar 

  • Lyons J et al (2015) Trends in the reproductive phenology of two Great Lakes fishes. Trans Am Fish Soc 144:1263–1274. doi:10.1080/00028487.2015.1082502

    Article  Google Scholar 

  • MacKay M, Seglenieks F (2013) On the simulation of Laurentian Great Lakes water levels under projections of global climate change. Clim Change 117:55–67. doi:10.1007/s10584-012-0560-z

    Article  Google Scholar 

  • Madenjian CP, Tyson JT, Knight RL, Kershner MW, Hansen MJ (1996) First-year growth, recruitment, and maturity of walleyes in western Lake Erie. Trans Am Fish Soc 125:821–830. doi:10.1577/1548-8659(1996)125<0821:fygram>2.3.co;2

    Article  Google Scholar 

  • Madenjian CP, Hook TO, Rutherford ES, Mason DM, Croley TE, Szalai EB, Bence JR (2005) Recruitment variability of alewives in Lake Michigan. Trans Am Fish Soc 134:218–230. doi:10.1577/ft03-222.1

    Article  Google Scholar 

  • Madenjian CP, Pothoven SA, Dettmers JM, Holuszko JD (2006) Changes in seasonal energy dynamics of alewife (Alosa pseudoharengus) in Lake Michigan after invasion of dreissenid mussels. Canad J Fish Aquat Sci 63:891–902

    Article  Google Scholar 

  • Madenjian CP et al (2008) Adverse effects of alewives on Laurentian Great Lakes fish communities. N Am J Fish Manag 28:263–282

    Article  Google Scholar 

  • Madenjian CP, Rutherford ES, Blouin MA, Sederberg BJ, Elliott JR (2011) Spawning habitat unsuitability: an impediment to cisco rehabilitation in Lake Michigan? N Am J Fish Manag 31:905–913. doi:10.1080/02755947.2011.632065

    Article  Google Scholar 

  • Magnuson JJ, Crowder LB, Medvick PA (1979) Temperature as an ecological resource. Am Zool 19:331–343

    Article  Google Scholar 

  • Magnuson JJ, Meisner JD, Hill DK (1990) Potential changes in the thermal habitat of Great Lakes Fish after global climate warming. Trans Am Fish Soc 119:254–264. doi:10.1577/1548-8659(1990)119<0254:pcitth>2.3.co;2

    Article  Google Scholar 

  • Magnuson JJ et al (1997) Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield Region. Hydrol Process 11:825–871

    Article  Google Scholar 

  • Manabe S, Wetherald RT, Milly PCD, Delworth TL, Stouffer RJ (2004) Century-scale change in water availability: CO2-quadrupling experiment. Clim Change 64:59–76. doi:10.1023/B:CLIM.0000024674.37725.ca

    Article  CAS  Google Scholar 

  • Manca M, DeMott WR (2009) Response of the invertebrate predator Bythotrephes to a climate-linked increase in the duration of a refuge from fish predation. Limnol Oceanogr 54:2506–2512. doi:10.4319/lo.2009.54.6_part_2.2506

    Article  Google Scholar 

  • Mandrak NE (1989) Potential invasion of the Great Lakes by fish species associated with climatic warming. J Gt Lakes Res 15:306–316. doi:10.1016/s0380-1330(89)71484-2

    Article  Google Scholar 

  • Manning NF, Bossenbroek JM, Mayer CM, Bunnell DB, Tyson JT, Rudstam LG, Jackson JR (2014) Modeling turbidity type and intensity effects on the growth and starvation mortality of age-0 yellow perch. Canad J Fish Aquat Sci 71:1544–1553. doi:10.1139/cjfas-2013-0528

    Article  Google Scholar 

  • Manny BA (2007) Detroit River coastal wetlands. In: Hartig JH, Zarull MA, Ciborowski JJH, Gannon JE, Wilke E, Norwood G, Vincent A (eds) State of the strait: status and trends of key indicators. Great Lakes Institute for Environmental Research Occasional Publication No. 5, University of Windsor, Windsor, pp 172–176. ISSN 1715-3980

  • May CJ (2015) The importance of early life processes to future growth and recruitment in Lake Erie Walleye. Doctoral dissertation. The Ohio State University

  • McCormick MJ, Fahnenstiel GL (1999) Recent climatic trends in nearshore water temperatures in the St. Lawrence Great Lakes. Limnol Oceanogr 44:530–540

    Article  Google Scholar 

  • McCormick MJ, Pazdalski JD (1993) Monitoring midlake water temperature in southern Lake Michigan for climate change studies. Clim Change 25:119–125. doi:10.1007/bf01661201

    Article  Google Scholar 

  • McDermid JL, Dickin SK, Winsborough CL, Switzman H, Barr S, Gleeson JA, Krantzberg G, Gray PA (2015) State of climate change science in the Great Lakes Basin: a focus on climatological, hydrological, and ecological effects. Toronto and Region Conservation Authority

  • Meisner JD, Goodier JL, Regier HA, Shuter BJ, Christie WJ (1987) An assessment of the effects of climate warming on great lakes basin fishes. J Gt Lakes Res 13:340–352. doi:10.1016/S0380-1330(87)71656-6

    Article  Google Scholar 

  • Michalak AM et al (2013) Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci USA 110:6448–6452. doi:10.1073/pnas.1216006110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michigan Department of Natural Resources (2013) Charting the course: fisheries division’s framework for managing aquatic resources. Lansing

  • Miller RR (1957) Origin and dispersal of the alewife, Alosa pseudoharengus, and the gizzard shad, Dorosoma cepedianum, in the Great Lakes. Trans Am Fish Soc 86:97–111

    Article  Google Scholar 

  • Miner JG, Stein RA (1996) Detection of predators and habitat choice by small bluegills: effects of turbidity and alternative prey. Trans Am Fish Soc 125:97–103. doi:10.1577/1548-8659(1996)125<0097:dopahc>2.3.co;2

    Article  Google Scholar 

  • Minns CK (2014) Management of Great Lakes fisheries: progressions and lessons. Aquat Ecosyst Health Manag 17:382–393. doi:10.1080/14634988.2014.967163

    Google Scholar 

  • Minns CK, Moore JE, Doka SE, St John MA (2011) Temporal trends and spatial patterns in the temperature and oxygen regimes in the Bay of Quinte, Lake Ontario, 1972–2008. Aquat Ecosyst Health Manag 14:9–20. doi:10.1080/14634988.2011.547327

    Article  Google Scholar 

  • Moran R, Harvey I, Moss B, Feuchtmayr H, Hatton K, Heyes T, Atkinson D (2010) Influence of simulated climate change and eutrophication on three-spined stickleback populations: a large scale mesocosm experiment. Freshw Biol 55:315–325. doi:10.1111/j.1365-2427.2009.02276.x

    Article  CAS  Google Scholar 

  • Mulvaney KK, Foley CJ, Hook TO, McNie EC, Prokopy LS (2014) Identifying useful climate change information needs of Great Lakes fishery managers. J Gt Lakes Res 40:590–598. doi:10.1016/j.jglr.2014.06.002

    Article  Google Scholar 

  • Myers RA (1998) When do environment-recruitment correlations work? Rev Fish Biol Fish 8:285. doi:10.1023/A:1008828730759

    Article  Google Scholar 

  • Myers JT, Yule DL, Jones ML, Quinlan HR, Berglund EK (2014) Foraging and predation risk for larval cisco (Coregonus artedi) in Lake Superior: a modelling synthesis of empirical survey data. Ecol Model 294:71–83. doi:10.1016/j.ecolmodel.2014.09.009

    Article  Google Scholar 

  • Nalepa TF, Fanslow DL, Lang GA (2009) Transformation of the offshore benthic community in Lake Michigan: recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugensis. Freshw Biol 54:466–479. doi:10.1111/j.1365-2427.2008.02123.x

    Article  Google Scholar 

  • Nelson KM, Ruetz CR, Uzarski DG (2009) Colonisation by Dreissena of Great Lakes coastal ecosystems: how suitable are wetlands? Freshw Biol 54:2290–2299. doi:10.1111/j.1365-2427.2009.02265.x

    Article  CAS  Google Scholar 

  • New York State Department of Environmental Conservation (NYSDEC) (2016a) Lake Erie 2015 Annual Report. New York State Department of Environmental Conservation, Albany

    Google Scholar 

  • New York State Department of Environmental Conservation (NYSDEC) (2016b) Lake Ontario annual report 2015. New York State Department of Environmental Conservation, Albany

    Google Scholar 

  • Notaro M, Bennington V, Lofgren B (2015a) Dynamical downscaling-based projections of Great Lakes water levels. J Clim 28:9721–9745. doi:10.1175/jcli-d-14-00847.1

    Article  Google Scholar 

  • Notaro M, Bennington V, Vavrus S (2015b) Dynamically downscaled projections of lake-effect snow in the Great Lakes Basin. J Clim 28:1661–1684. doi:10.1175/jcli-d-14-00467.1

    Article  Google Scholar 

  • Oglesby RT, Leach JH, Forney J (1987) Potential Stizostedion yield as a function of chlorophyll concentration with special reference to Lake Erie. Can J Fish Aquat Sci 44:s166–s170. doi:10.1139/f87-320

    Article  Google Scholar 

  • O’Gorman R, Burnett JAD (2001) Fish community dynamics in northeastern Lake Ontario with emphasis on the growth and reproductive success of yellow perch (Perca flavescens) and white perch (Morone americana), 1978 to 1997. J Gt Lakes Res 27:367–383

    Article  Google Scholar 

  • Ontario Ministry of Natural Resources and Forestry (OMNRF) (2015) Ontario’s provincial fish strategy: fish for the future. Ontario Ministry of Natural Resources and Forestry, Peterborough

    Google Scholar 

  • Pangle KL, Peacor SD, Johannsson OE (2007) Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology 88:402–412. doi:10.1890/06-0768

    Article  PubMed  Google Scholar 

  • Pangle KL, Malinich TD, Bunnell DB, DeVries DR, Ludsin SA (2012) Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging. Ecosphere. doi:10.1890/es12-00224.1

    Google Scholar 

  • Paukert CP et al (2016) Adapting inland fisheries management to a changing climate. Fisheries 41:374–384. doi:10.1080/03632415.2016.1185009

    Article  Google Scholar 

  • Pauly D et al (2002) Towards sustainability in world fisheries. Nature 418:689–695

    Article  CAS  PubMed  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi:10.1126/science.1111322

    Article  CAS  PubMed  Google Scholar 

  • Phillips JC, McKinley GA, Bennington V, Bootsma HA, Pilcher DJ, Sterner RW, Urban NR (2015) The potential for CO2-induced acidification in freshwater: a great lakes case study. Oceanography 28:136–145. doi:10.5670/oceanog.2015.37

    Article  Google Scholar 

  • Poesch MS, Chavarie L, Chu C, Pandit SN, Tonn W (2016) Climate change impacts on freshwater fishes: a Canadian perspective. Fisheries 41:385–391. doi:10.1080/03632415.2016.1180285

    Article  Google Scholar 

  • Portner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi:10.1126/science.1163156

    Article  PubMed  Google Scholar 

  • Portner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. doi:10.1126/science.1135471

    Article  PubMed  CAS  Google Scholar 

  • Portner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    Article  CAS  PubMed  Google Scholar 

  • Pothoven SA, Nalepa TF, Schneeberger PJ, Brandt SB (2001) Changes in diet and body condition of lake whitefish in southern Lake Michigan associated with changes in benthos. N Am J Fish Manag 21:876–883. doi:10.1577/1548-8675(2001)021<0876:cidabc>2.0.co;2

    Article  Google Scholar 

  • Pothoven SA, Vanderploeg HA, Cavaletto JF, Krueger DM, Mason DM, Brandt SB (2007) Alewife planktivory controls the abundance of two invasive predatory cladocerans in Lake Michigan. Freshw Biol 52:561–573. doi:10.1111/j.1365-2427.2007.01728.x

    Article  Google Scholar 

  • Pritt JJ, Roseman EF, O’Brien TP (2014) Mechanisms driving recruitment variability in fish: comparisons between the Laurentian Great Lakes and marine systems. ICES J Mar Sci 71:2252–2267. doi:10.1093/icesjms/fsu080

    Article  Google Scholar 

  • Pryor SC, Scavia D, Downer C, Gaden M, Iverson L, Nordstrom R, Patz J, Robertson GP (2014) Ch. 18: Midwest. In: Melillo JM, Richmond TT, Yohe GW (ed) Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, pp 418–440. doi:10.7930/J0J10112N

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533. doi:10.1111/j.1523-1739.2008.00950.x

    Article  PubMed  Google Scholar 

  • Redman RA, Czesny SJ, Dettmers JM, Weber MJ, Makauskas D (2011) Old tales in recent context: current perspective on yellow perch recruitment in Lake Michigan. Trans Am Fish Soc 140:1277–1289. doi:10.1080/00028487.2011.620480

    Article  Google Scholar 

  • Regier HA, Holmes JA, Pauly D (1990) Influence of temperature changes on aquatic ecosystems: an interpretation of empirical data. Trans Am Fish Soc 119:374–389. doi:10.1577/1548-8659(1990)119<0374:iotcoa>2.3.co;2

    Article  Google Scholar 

  • Regier HA, Whillans TH, Christie WJ, Bocking SA (1999) Over-fishing in the Great Lakes: the context and history of the controversy. Aquat Ecosyst Health Manag 2:239–248. doi:10.1080/14634989908656959

    Google Scholar 

  • Reichert JM, Fryer BJ, Pangle KL, Johnson TB, Tyson JT, Drelich AB, Ludsin SA (2010) River-plume use during the pelagic larval stage benefits recruitment of a lentic fish. Canad J Fish Aquat Sci 67:987–1004. doi:10.1139/f10-036

    Article  Google Scholar 

  • Rennie MD, Sprules WG, Johnson TB (2009) Factors affecting the growth and condition of lake whitefish (Coregonus clupeaformis). Canad J Fish Aquat Sci 66:2096–2108

    Article  Google Scholar 

  • Rice JA, Crowder LB, Holey ME (1987) Exploration of mechanisms regulating larval survival in Lake Michigan bloater: a recruitment analysis based on characteristidcs of individual larvae. Trans Am Fish Soc 116:703–718. doi:10.1577/1548-8659(1987)116<703:eomrls>2.0.co;2

    Article  Google Scholar 

  • Riley SC, Roseman EF, Nichols SJ, O’Brien TP, Kiley CS, Schaeffer JS (2008) Deepwater demersal fish community collapse in Lake Huron. Trans Am Fish Soc 137:1879–1890

    Article  Google Scholar 

  • Robertson DM, Saad DA, Christiansen DE, Lorenz DJ (2016) Simulated impacts of climate change on phosphorus loading to Lake Michigan. J Gt Lakes Res 42:536–548

    Article  CAS  Google Scholar 

  • Rose KC, Winslow LA, Read JS, Hansen GJA (2016) Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol Oceanogr Lett 1:44–53. doi:10.1002/lol2.10027

    Article  Google Scholar 

  • Roseman EF, Schaeffer JS, Bright E, Fielder DG (2014) Angler-caught piscivore diets reflect dish community changes in Lake Huron. Trans Am Fish Soc 143:1419–1433

    Article  CAS  Google Scholar 

  • Scavia D et al (2014) Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. J Gt Lakes Res 40:226–246. doi:10.1016/j.jglr.2014.02.004

    Article  CAS  Google Scholar 

  • Schaeffer JS, Margraf FJ (1986) Food of white perch (Morone-americana) and potential for competition with yellow perch (Perca-flavescens) in Lake Erie. Ohio J Sci 86:26–29

    Google Scholar 

  • Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54:2349–2358. doi:10.4319/lo.2009.54.6_part_2.2349

    Article  CAS  Google Scholar 

  • Schneider KN, Newman RM, Card V, Weisberg S, Pereira DL (2010) Timing of walleye spawning as an indicator of climate change. Trans Am Fish Soc 139:1198–1210. doi:10.1577/t09-129.1

    Article  Google Scholar 

  • Sharma S et al (2015) A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci Data 2:150008. doi:10.1038/sdata.2015.8

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheath DJ, Andreou D, Britton JR (2016) Interactions of warming and exposure affect susceptibility to parasite infection in a temperate fish species. Parasitology 143:1340–1346. doi:10.1017/s0031182016000846

    Article  PubMed  Google Scholar 

  • Shepherd TG (2016) Effects of a warming. Arct Sci 353:989–990. doi:10.1126/science.aag2349

    CAS  Google Scholar 

  • Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406. doi:10.1038/nclimate1259

    Article  Google Scholar 

  • Shimoda Y et al (2011) Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes? J Gt Lakes Res 37:173–193. doi:10.1016/j.jglr.2010.10.004

    Article  CAS  Google Scholar 

  • Smith SH (1968) Species succession and fishery exploitation in Great Lakes. J Fish Res Board Canada 25:667

    Article  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139. doi:10.1065/espr2002.12.142

    Article  CAS  Google Scholar 

  • Smith BR, Tibbles JJ (1980) Sea Lamprey (Petromyzon marinus) in Lakes Huron, Michigan, and Superior: history of invasion and control, 1936–78. Canad J Fish Aquat Sci 37:1780–1801. doi:10.1139/f80-222

    Article  Google Scholar 

  • Southward AJ, Boalch GT, Maddock L (1988) Fluctuations in the herring and pilchard fisheries of Devon and Cornwall linked to change in climate since the 16th century. J Mar Biol Assoc UK 68:423–445

    Article  Google Scholar 

  • Staudinger MD et al (2013) Biodiversity in a changing climate: a synthesis of current and projected trends in the US. Front Ecol Environ 11:465–473. doi:10.1890/120272

    Article  Google Scholar 

  • Stefan HG, Fang X, Eaton JG (2001) Simulated fish habitat changes in North American lakes in response to projected climate warming. Trans Am Fish Soc 130:459–477

    Article  Google Scholar 

  • Stein BA et al (2013) Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front Ecol Environ 11:502–510. doi:10.1890/120277

    Article  Google Scholar 

  • Steinhart GB, Marschall EA, Stein RA (2004) Round goby predation on smallmouth bass offspring in nests during simulated catch-and-release angling. Trans Am Fish Soc 133:121–131. doi:10.1577/t03-020

    Article  Google Scholar 

  • Stewart TJ, Johannsson OE, Holeck K, Sprules WG, O’Gorman R (2010) The Lake Ontario zooplankton community before (1987–1991) and after (2001–2005) invasion-induced ecosystem change. J Gt Lakes Res 36:596–605. doi:10.1016/j.jglr.2010.07.010

    Article  Google Scholar 

  • Stockwell JD, Johannsson OE (1997) Temperature-dependent allometric models to estimate zooplankton production in temperate freshwater lakes. Canad J Fish Aquat Sci 54:2350–2360. doi:10.1139/cjfas-54-10-2350

    Article  Google Scholar 

  • Stockwell JD et al (2009) A synthesis of cisco recovery in lake superior: implications for native fish rehabilitation in the Laurentian Great Lakes. N Am J Fish Manag 29:626–652. doi:10.1577/m08-002.1

    Article  Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358. doi:10.1899/08-171.1

    Article  Google Scholar 

  • Swenson WA (1977) Food-consumption of walleye (Stizostedion-vitreum-vitreum) and sauger (Stizostedion-canadense) in relation to food availability and physical conditions in Lake of Woods, Minnesota, Shagawa Lake, and Western Lake-Superior. J Fish Res Board Canada 34:1643–1654

    Article  Google Scholar 

  • Taylor SG (2008) Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob Change Biol 14:229–235. doi:10.1111/j.1365-2486.2007.01494.x

    Article  Google Scholar 

  • Thackeray SJ et al (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313. doi:10.1111/j.1365-2486.2010.02165.x

    Article  Google Scholar 

  • Thackeray SJ, Henrys PA, Feuchtmayr H, Jones ID, Maberly SC, Winfield IJ (2013) Food web de-synchronization in England’s largest lake: an assessment based on multiple phenological metrics. Glob Change Biol 19:3568–3580. doi:10.1111/gcb.12326

    Article  Google Scholar 

  • Thayer SA, Loftus AJ (2012) Great Lakes recreational fisheries and their role in fisheries management and policy. In: Taylor WW, Lynch AJ, Leonard NJ (eds) Great Lakes Fisheries policy and management: a binational perspective, 2nd edn. Michigan State University Press, East Lansing, pp 399–440

    Google Scholar 

  • Tody WH, Tanner HA (1966) Coho salmon for the Great Lakes. Fish management report no. 1, Michigan Department of Conservation Fish Division, Lansing

  • Trebitz AS, Hoffman JC (2015) Coastal wetland support of Great Lakes fisheries: progress from concept to quantification. Trans Am Fish Soc 144:352–372. doi:10.1080/00028487.2014.982257

    Article  Google Scholar 

  • Trebitz AS et al (2009) Geographic, anthropogenic, and habitat influences on Great Lakes coastal wetland fish assemblages. Canad J Fish Aquat Sci 66:1328–1342. doi:10.1139/f09-089

    Article  Google Scholar 

  • Trumpickas J, Shuter BJ, Minns CK (2009) Forecasting impacts of climate change on Great Lakes surface water temperatures. J Gt Lakes Res 35:454–463

    Article  Google Scholar 

  • Trumpickas J, Shuter BJ, Minns CK, Cyr H (2015) Characterizing patterns of nearshore water temperature variation in the North American Great Lakes and assessing sensitivities to climate change. J Gt Lakes Res 41:53–64. doi:10.1016/j.jglr.2014.11.024

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2014) Great Lakes restoration initiative, action plan II. U.S. Environmental Protection Agency

  • Vanderploeg HA et al (2002) Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Can J Fish Aquat Sci 59:1209–1228. doi:10.1139/f02-087

    Article  Google Scholar 

  • Vanderploeg HA et al (2012) Seasonal zooplankton dynamics in Lake Michigan: disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition. J Gt Lakes Res 38:336–352. doi:10.1016/j.jglr.2012.02.005

    Article  CAS  Google Scholar 

  • Vollenweider RA, Munawar M, Stadelmann P (1974) Comparative review of phytoplankton and primary production in Laurentian Great Lakes. J Fish Res Board Canada 31:739–762

    Article  Google Scholar 

  • Wallace JM, Held IM, Thompson DWJ, Trenberth KE, Walsh JE (2014) Global warming and winter weather. Sci 343:729–730. doi:10.1126/science.343.6172.729

    Article  CAS  Google Scholar 

  • Wang J, Bai XZ, Hu HG, Clites A, Colton M, Lofgren B (2012) Temporal and spatial variability of great lakes ice cover, 1973–2010. J Clim 25:1318–1329. doi:10.1175/2011jcli4066.1

    Article  Google Scholar 

  • Wang X, Huang G, Baetz BW (2016) Dynamically-downscaled probabilistic projections of precipitation changes: a Canadian case study. Environ Res 148:86–101. doi:10.1016/j.envres.2016.03.019

    Article  PubMed  CAS  Google Scholar 

  • Wellington CG, Mayer CM, Bossenbroek JM, Stroh NA (2010) Effects of turbidity and prey density on the foraging success of age 0 year yellow perch Perca flavescens. J Fish Biol 76:1729–1741. doi:10.1111/j.1095-8649.2010.02612.x

    Article  CAS  PubMed  Google Scholar 

  • Whitney JE et al (2016) Physiological basis of climate change impacts on North American Inland fishes. Fisheries 41:332–345. doi:10.1080/03632415.2016.1186656

    Article  Google Scholar 

  • Wilcox DA, Whillans TH (1999) Techniques for restoration of disturbed coastal wetlands of the Great Lakes. Wetlands 19:835–857

    Article  Google Scholar 

  • Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282. doi:10.4319/lo.2009.54.6_part_2.2273

    Article  Google Scholar 

  • Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Glob Change Biol 10:1844–1856

    Article  Google Scholar 

  • Yurista PM, Vanderploeg HA, Liebig JR, Cavaletto JF (2010) Lake Michigan Bythotrephes prey consumption estimates for 1994–2003 using a temperature and size corrected bioenergetic model. J Gt Lakes Res 36:74–82. doi:10.1016/j.jglr.2010.03.007

    Article  Google Scholar 

  • Zimmerman MS, Krueger CC (2009) An ecosystem perspective on re-establishing native deepwater fishes in the Laurentian Great Lakes. N Am J Fish Manag 29:1352–1371. doi:10.1577/m08-194.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mitch Zischke and three anonymous reviewers who provided helpful reviews of the manuscript. Funding for this work was provided by the U.S. Geological Survey, National Climate Change and Wildlife Science Center. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paris D. Collingsworth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collingsworth, P.D., Bunnell, D.B., Murray, M.W. et al. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Rev Fish Biol Fisheries 27, 363–391 (2017). https://doi.org/10.1007/s11160-017-9480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-017-9480-3

Keywords

Navigation