Advertisement

Reviews in Fish Biology and Fisheries

, Volume 26, Issue 3, pp 375–403 | Cite as

Diversity of juvenile Chinook salmon life history pathways

  • Samuel L. Bourret
  • Christopher C. Caudill
  • Matthew L. Keefer
Reviews

Abstract

Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.

Keywords

Biocomplexity Migration Plasticity Resiliency Phenotypic Diversity Environment Conditional strategy 

Notes

Acknowledgments

We acknowledge the workers who have puzzled over the life history of Chinook salmon in the past for their contributions to this review. We thank the Fish Life History Analysis Project of the Oregon Department of Fish and Wildlife for collaboration. We thank John Sugden for making the distribution map. This work was funded by the U.S. Army Corps of Engineers, Portland District, with administrative support from David Griffith. Two anonymous reviewers provided constructive comments that greatly improved this paper.

References

  1. Achord S, Zabel RW, Sandford BP (2007) Migration timing, growth, and estimated parr-to-smolt survival rates of wild Snake River spring–summer Chinook salmon from the Salmon River basin, Idaho, to the lower Snake River. Trans Am Fish Soc 136:142–154. doi: 10.1577/T05-308.1 CrossRefGoogle Scholar
  2. Achord S, Sandford BP, Smith SG, Wassard WR, Prentice EF (2011) In-stream monitoring of PIT-tagged wild spring/summer Chinook salmon juveniles in Valley Creek, Idaho. Am Fish Soc Symp 76:1–14Google Scholar
  3. Adams MJ (2008) Graph decompositions for demographic loop analysis. J Math Biol 57:209–211PubMedCrossRefGoogle Scholar
  4. Arismendi I, Penaluna BE, Dunham JB et al (2014) Differential invasion success of salmonids in southern Chile: patterns and hypotheses. Rev Fish Biol Fish 24:919–941. doi: 10.1007/s11160-014-9351-0 CrossRefGoogle Scholar
  5. Augerot X (2005) Atlas of Pacific Salmon. University of California Press, BerkeleyGoogle Scholar
  6. Baerwald MR, Meek H, Stephend MR, Nagarajan AM, Goodbla AM, Tomalty KM, Thorgaard GH, May B, Michols M (2016) Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol 25:1785–1800. doi: 10.1111/mec.13231 PubMedCrossRefGoogle Scholar
  7. Beacham TD, Murray CB (1990) Temperature, egg size, and development of embryos and alevins of five species of pacific salmon: a comparative analysis. Trans Am Fish Soc 119:927–945CrossRefGoogle Scholar
  8. Beacham TD, Murray CB, Withler RE (1989) Age, morphology, and biochemical genetic variation of Yukon River Chinook salmon. Trans Am Fish Soc 118:46–63CrossRefGoogle Scholar
  9. Beakes MP, Satterthwaite WH, Collins EM et al (2010) Smolt transformation in two California steelhead populations: effects of temporal variability in growth. Trans Am Fish Soc 139:1263–1275. doi: 10.1577/T09-146.1 CrossRefGoogle Scholar
  10. Beamer EM, Sartori JC (2000) Skagit Chinook life history study, progress report number 3. Skagit System Cooperative, La ConnerGoogle Scholar
  11. Beckman BR, Larsen DA, Lee-Pawlak B, Dickhoff WW (1998) Relation of fish size and growth rate to migration of spring Chinook salmon smolts. N Am J Fish Manag 18:37–41. doi: 10.1577/1548-8675(1998)018 CrossRefGoogle Scholar
  12. Beckman BR, Gadberry B, Parkins P, Cooper KA, Arkush KD (2007) State-dependent life history plasticity in Sacramento River winter-run Chinook salmon (Oncorhynchus tshawytscha): interactions among photoperiod and growth modulate smolting and early male maturation. Can J Fish Aquat Sci 271:256–271. doi: 10.1139/F07-001 CrossRefGoogle Scholar
  13. Beechie T, Buhle E, Ruckelshaus M, Fullerton A, Holsinger L (2006) Hydrologic regime and the conservation of salmon life history diversity. Biol Conserv 130:560–572. doi: 10.1016/j.biocon.2006.01.019 CrossRefGoogle Scholar
  14. Bennett TR, Roni P, Denton K, McHenry M, Moses R (2014) Nomads no more: early juvenile coho salmon migrants contribute to the adult return. Ecol Freshw Fish. doi: 10.1111/eff.12144 Google Scholar
  15. Berejikian B, Ford M (2003) A review of relative fitness of hatchery and natural salmon. National Marine Fisheries Service, Seattle, pp 1–29Google Scholar
  16. Berejikian BA, Bradford M, Van Doornik DM, Endicott RC et al (2010) Mating success of alternative male phenotypes and evidence for frequency-dependent selection in Chinook salmon, Oncorhynchus tshawytscha. Can J Fish Aquat Sci 67:1933–1941. doi: 10.1139/F10-112 CrossRefGoogle Scholar
  17. Berg OK, Hendry P, Svendsen B, Bech C, Arnekleiv JV, Lohrmann A (2001) Maternal provisioning of offspring and the use of those resources during ontogeny: variation within and between Atlantic salmon families. Funct Ecol 15:13–23. doi: 10.1046/j.1365-2435.2001.00473.x CrossRefGoogle Scholar
  18. Bigler BS, Welch DW, Helle JH (1996) A review of size trends among North Pacific salmon (Oncorhynchus spp.). Can J Fish Aquat Sci 53:455–465CrossRefGoogle Scholar
  19. Billman EJ, Whitman LD, Schroeder RK, Sharpe CS, Noakes DLG, Schreck CB (2014) Body morphology differs in wild Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, U.S.A. J Fish Biol 85:1097–1110PubMedCrossRefGoogle Scholar
  20. Bjornn TC (1971) Trout and salmon movements in two Idaho streams as related to temperature, food, stream flow, cover, and population density. Trans Am Fish Soc 100:423–438. doi: 10.1577/1548-8659(1971)100<423 CrossRefGoogle Scholar
  21. Bottom DL, Jones KK, Cornwell TJ, Gray A, Simenstad CA (2005) Patterns of Chinook salmon migration and residency in the Salmon River estuary (Oregon). Estuar Coast Shelf Sci 64:79–93CrossRefGoogle Scholar
  22. Bourret SL, Kennedy BP, Caudill CC, Chittaro PM (2014) Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha. J Fish Biol 85:1507–1525. doi: 10.1111/jfb.12505 PubMedCrossRefGoogle Scholar
  23. Bradford MJ, Taylor GC (1997) Individual variation in dispersal behavior of newly emerged Chinook salmon (Oncorhynchus tshawytscha) from the Upper Fraser River, British Columbia. Can J Fish Aquat Sci 54:1585–1592CrossRefGoogle Scholar
  24. Bradford MJ, Grout JA, Moodie S (2001) Ecology of juvenile Chinook salmon in a small non-natal stream of the Yukon River drainage and the role of ice conditions on their distribution and survival. Can J Zool 79:2043–2054. doi: 10.1139/cjz-79-11-2043 CrossRefGoogle Scholar
  25. Brannon EL (1987) Mechanisms stabilizing salmonid fry emergence timing. In: Margolis L, Wood CC (eds) Smith HD. Sockeye salmon (Oncorhynchus nerka) population biology and future management, Can J Fish Aquat Sci Spec Pub, pp 120–124Google Scholar
  26. Brannon EL, Powell MS, Quinn TP, Talbot A (2004) Population structure of Columbia River basin Chinook salmon and steelhead trout. Rev Fish Sci 12:99–232CrossRefGoogle Scholar
  27. Brennan SR, Zimmerman CE, Fernandez DP, Cerling TE, McPhee MV, Wooller MJ (2015) Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon. Sci Adv 1(e1400124):1–6Google Scholar
  28. Brett JR (1979) Environmental factors and growth. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 8. Academic Press, New York, pp 599–677Google Scholar
  29. Byron CJ, Burke BJ (2014) Salmon ocean migration models suggest a variety of population-specific strategies. Rev Fish Biol Fisheries 24:737–756CrossRefGoogle Scholar
  30. Campbell LA, Bottom DL, Volk EC, Fleming IA (2014) Correspondence between scale morphometrics and scale and otolith chemistry for interpreting juvenile salmon life histories. Trans Am Fish Soc 144:55–67. doi: 10.1080/00028487.2014.963253 CrossRefGoogle Scholar
  31. Carl LM, Healey MC (1984) Differences in enzyme frequency and body morphologies of Chinook salmon (Oncorhynchus tshawytscha) in the Nanaimo River, British Columbia. Can J Fish Aquat Sci 41:1070–1077CrossRefGoogle Scholar
  32. Carlson SM, Satterthwaite WH (2011) Weakened portfolio effect in a collapsed salmon population complex. Can J Fish Aquat Sci 68:1579–1589. doi: 10.1139/F2011-084 CrossRefGoogle Scholar
  33. Caswell H (2001) Matrix population models: construction analysis and interpretation, 2nd edn. Sinauer, SunderlandGoogle Scholar
  34. Caswell H, Naiman RJ, Morin R (1984) Evaluating the consequences of reproduction in complex salmonid life cycles. Aquaculture 43:123–134CrossRefGoogle Scholar
  35. Chamberlin JW, Kagley AN, Freh KL, Quinn TP (2011) Movements of yearling Chinook Salmon during the first summer in marine waters of Hood Canal, Washington. Trans Am Fish Soc 140:429–439. doi: 10.1080/00028487.2011.572006 CrossRefGoogle Scholar
  36. Christie MR, Ford MJ, Blouin MS (2014) On the reproductive success of early-generation hatchery fish in the wild. Evol Appl 7:1–14. doi: 10.1111/eva.12183 CrossRefGoogle Scholar
  37. Claiborne AM, Fisher JP, Hayes SA, Emmett RL (2011) Size at release, size-selective mortality, and age of maturity of Willamette River hatchery yearling Chinook salmon. Trans Am Fish Soc 140:1135–1144. doi: 10.1080/00028487.2011.607050 CrossRefGoogle Scholar
  38. Clarke WC, Withier RE, Shelbourn E (1992) Genetic control of juvenile life history pattern in Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 49:2300–2306CrossRefGoogle Scholar
  39. Clarke WC, Craig Withler RE, Shelbourn E (1994) Inheritance of smolting phenotypes in backcrosses of hybrid stream-type × ocean-type Chinook salmon (Oncorhynchus tshawytscha). Estuaries 17:13–25CrossRefGoogle Scholar
  40. Connor WP, Burge HL, Waitt R, Bjornn TC (2002) Juvenile life history of wild fall Chinook salmon in the Snake and Clearwater rivers. N Am J Fish Manag 22:703–712CrossRefGoogle Scholar
  41. Connor WP, Sneva JG, Tiffan KF, Steinhorst RK, Ross D (2005) Two alternative juvenile life history types for fall Chinook Salmon in the Snake River basin. Trans Am Fish Soc 134:41–54. doi: 10.1577/T03.-131.3 CrossRefGoogle Scholar
  42. Copeland T, Venditti DA (2009) Contribution of three life history types to smolt production in a Chinook salmon (Oncorhynchus tshawytscha) population. Can J Fish Aquat Sci 66:1658–1665. doi: 10.1139/F09-110 CrossRefGoogle Scholar
  43. Copeland T, Venditti D, Barnett BR (2014) The importance of juvenile migration tactics to adult recruitment in stream-type Chinook Salmon populations. Trans Am Fish Soc 143:1460–1475CrossRefGoogle Scholar
  44. Crozier LG, Hutchings JA (2014) Plastic and evolutionary responses to climate change in fish. Evol Appl 7:68–87PubMedPubMedCentralCrossRefGoogle Scholar
  45. Crozier LG, Hendry AP, Lawson PW et al (2008) Potential responses to climate change in organisms with complex life histories: evolution and plasticity in pacific salmon. Evol Appl 1:252–270. doi: 10.1111/j.1752-4571.2008.00033.x PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dauble DD, Johnson RL, Garcia AP (1999) Fall Chinook salmon spawning in the tailraces of lower Snake River hydroelectric projects. Trans Am Fish Soc 128:672–679CrossRefGoogle Scholar
  47. Daum DW, Flannery BG (2011) Canadian-origin Chinook salmon rearing in nonnatal U.S. tributary streams of the Yukon River, Alaska. Trans Am Fish Soc 140:207–220. doi: 10.1080/00028487.2011.545004 CrossRefGoogle Scholar
  48. Dittman AH, Quinn TP (1996) Homing in pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91PubMedGoogle Scholar
  49. Doctor K, Berejikian B, Hard JJ, VanDoornik D (2014) Growth-mediated life history traits of steelhead reveal phenotypic divergence and plastic response to temperature. Trans Am Fish Soc 143:317–333. doi: 10.1080/00028487.2013.849617 CrossRefGoogle Scholar
  50. Dodson JJ, Aubin-Horth N, Thériault V, Páez DJ (2013) The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol Rev Camb Philos Soc 88:602–625. doi: 10.1111/brv.12019 PubMedCrossRefGoogle Scholar
  51. Duffy EJ, Beauchamp DA, Buckley RM (2005) Early marine life history of juvenile Pacific salmon in two regions of Puget Sound. Estuar Coast Shelf Sci 64:94–107. doi: 10.1016/j.ecss.2005.02.009 CrossRefGoogle Scholar
  52. Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29(1):51–63PubMedCrossRefGoogle Scholar
  53. Ellner SP (1997) You bet your life: life-history strategies in fluctuating environments. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) Case studies in mathematical modeling: ecology, physiology, and cell biology. Prentice Hall, Upper Saddle River, pp 3–24Google Scholar
  54. Evans ML, Neff BD, Heath DD (2010) Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha). J Evol Biol 23:687–698. doi: 10.1111/j.1420-9101.2010.01934.x PubMedCrossRefGoogle Scholar
  55. Fitzpatrick BM (2012) Underappreciated consequences of phenotypic plasticity for ecological speciation. Int J Ecol 2012:1–12CrossRefGoogle Scholar
  56. Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc Biol Sci 267:1517–1523. doi: 10.1098/rspb.2000.1173 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ford M, Pearson TD, Murdoch A (2015) The spawning success of early maturing resident hatchery Chinook salmon in a natural river system. Trans Am Fish Soc 144:539–548. doi: 10.1080/00028487.2015.1009561 CrossRefGoogle Scholar
  58. Forseth T, Næsje TF, Jonsson B, Hårsaker K (1999) Juvenile migration in brown trout: a consequence of energetic state. J Anim Ecol 68:783–793CrossRefGoogle Scholar
  59. Friesen TA, Vile JS, Pribyl AL (2007) Outmigration of juvenile Chinook salmon in the lower Willamette River, Oregon. Northwest Sci 81:173–190CrossRefGoogle Scholar
  60. Gilbert CH (1912) Age at maturity of the pacific coast salmon of the genus Oncorhynchus. U.S. Bur Fish Bull 32:1–22Google Scholar
  61. Goniea TM, Keefer ML, Bjornn TC, Peery CA, Bennett DH, Stuehrenberg LC (2006) Behavioral thermoregulation and slowed migration by adult fall Chinook salmon in response to high Columbia River water temperatures. Trans Am Fish Soc 135:408–419. doi: 10.1577/T04-113.1 CrossRefGoogle Scholar
  62. Goto A (1987) Life history variation in males of the river sculpin, Cottus hangiongensis, along the course of a river. Environ Biol Fishes 19:81–91CrossRefGoogle Scholar
  63. Greene CM, Beechie TJ (2004) Consequences of potential density-dependent mechanisms on recovery of ocean-type Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 61:590–602CrossRefGoogle Scholar
  64. Greene CM, Hall JE, Guilbault KR, Quinn TP, Guilbault R (2010) Improved viability of populations with diverse life-history portfolios. Biol Lett 6:382–386PubMedCrossRefGoogle Scholar
  65. Groenendael JV, Kroon H, Kalisz S, Tuljapurkar S (1994) Loop analysis: evaluating life history pathways in population projection matrices. Ecology 75:2410–2415CrossRefGoogle Scholar
  66. Groot C, Margolis L (1991) Pacific salmon life histories. University of British Columbia Press, VancouverGoogle Scholar
  67. Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98PubMedCrossRefGoogle Scholar
  68. Gustafson RG, Waples RS, Myers JM, Weitkamp LA, Bryant JJ, Orlay W, Hard JJ (2007) Pacific salmon extinctions: quantifying lost and remaining diversity. Conserv Biol 21:1009–1020PubMedCrossRefGoogle Scholar
  69. Hallock RJ, Fry DH, LaFaunce DA (1957) The use of wire fyke traps to estimate the runs of adult salmon and steelhead in the Sacramento River. Calif Fish Game 43:271–298Google Scholar
  70. Hamann EJ, Kennedy BP (2012) Juvenile dispersal affects straying behaviors of adults in a migratory population. Ecology 93:733–740PubMedCrossRefGoogle Scholar
  71. Hankin DG, Nicholas W, Downey TW (1993) Evidence for inheritance of age of maturity in Chinook salmon Oncorhynchus tshawytscha. Can J Fish Aquat Sci 50:347–358CrossRefGoogle Scholar
  72. Harstad DL, Larsen DA, Beckman BR (2014) Variation in minijack rate among hatchery populations of Columbia River basin Chinook salmon. Trans Am Fish Soc 143:768–778. doi: 10.1080/00028487.2014.886621 CrossRefGoogle Scholar
  73. Hayes SA, Kocik JF (2014) Comparative estuarine and marine migration ecology of Atlantic salmon and steelhead: blue highways and open plains. Rev Fish Biol Fish 24:757–780CrossRefGoogle Scholar
  74. Hayes DB, Bellgraph BJ, Roth BM, Dauble DD, Mueller RP (2013) Timing of redd construction by fall Chinook salmon in the Hanford Reach of the Columbia river. River Res Appl 30:1110–1119. doi: 10.1002/rra CrossRefGoogle Scholar
  75. Hazel WN, Smock R, Johnson MD (1990) A polygenic model for the evolution and maintenance of conditional strategies. Proc R Soc London B 242:181–187CrossRefGoogle Scholar
  76. Healey MC (1982) Catch, escapement and stock-recruitment for British Columbia Chinook salmon since 1951. Can Tech Rep Fish Aquat Sci 1107:1–77Google Scholar
  77. Healey MC (1983) Coastwide distribution and ocean migration patterns of stream-type and ocean-type Chinook salmon, Oncorhynchus tshawytscha. Canadian field-naturalist 97:427–433Google Scholar
  78. Healey MC (1991) Life history of Chinook salmon (Oncorhynchus tshawytscha). In: Groot C, Margolis L (eds) Pacific salmon life histories. University of British Columbia Press, Vancouver, pp 313–393Google Scholar
  79. Healey MC (1994) Variation in the life history characteristics of Chinook salmon and its relevance to conservation of the Sacramento winter run of Chinook salmon. Conserv Biol 8:876–877CrossRefGoogle Scholar
  80. Heath DD, Rankin L, Bryden CA, Heath JW, Shrimpton JM (2002) Heritability and Y-chromosome influence in the jack male life history of Chinook salmon (Oncorhynchus tshawytscha). Heredity 89:311–317. doi: 10.1038/sj.hdy.6800141 PubMedCrossRefGoogle Scholar
  81. Hecht BC, Campbell NR, Holecek DE, Narum SR (2013) Genome-wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Mol Ecol 22:3061–3076. doi: 10.1111/mec.12082 PubMedCrossRefGoogle Scholar
  82. Hecht BC, Matala AP, Hess JE, Narum SR (2015) Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range. Mol Ecol 22:5573–5595. doi: 10.1111/mec.13049 CrossRefGoogle Scholar
  83. Hegg JC, Kennedy BP, Chittaro PM, Zabel RW (2013) Spatial structuring of an evolving life-history strategy under altered environmental conditions. Oecologia 172:1017–1029. doi: 10.1007/s00442-012-2564-2569 PubMedCrossRefGoogle Scholar
  84. Hellmair M, Kinziger AP (2014) Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity. PLoS ONE 9(11):e113139. doi: 10.1371/journal.pone.0113139 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hendry AP, Castric V, Kinnison MT, Quinn TP (2004) The evolution of philopatry and dispersal: homing versus straying in salmonids. In: Hendry AP, Stearns SC (eds) Evolution illuminated: salmon and their relatives. Oxford University Press, New York, pp 52–91Google Scholar
  86. Hess JE, Narum SR (2011) Single-nucleotide polymorphism (SNP) loci correlated with run timing in adult Chinook salmon from the Columbia River basin. Trans Am Fish Soc 140:855–864. doi: 10.1080/00028487.2011.588138 CrossRefGoogle Scholar
  87. Hess MA, Rabe CD, Vogel JL, Stephenson JJ, Nelson DD, Narum SR (2012) Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon. Mol Ecol 21:5236–5250PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hickford MJH, Schiel DR (2011) Population sinks resulting from degraded habitats of an obligate life-history pathway. Oecologia 166:131–140. doi: 10.1007/s00442-010-1834-7 PubMedCrossRefGoogle Scholar
  89. Hilborn R (2013) Ocean and dam influences on salmon survival. Proc Natl Acad Sci USA 110:6618–6619PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hilborn R, Quinn TP, Schindler DE, Rogers DE (2003) Biocomplexity and fisheries sustainability. Proc Nat Acad Sci USA 100(11):6564–6568PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hooper DU, Chapin FS III, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35CrossRefGoogle Scholar
  92. Hopkins CL, Unwin MJ (1997) The effect of restricted springtime feeding on growth and maturation of freshwater-reared Chinook salmon Oncorhynchus tshawytscha (Walbaum). Aquacult Res 28:545–549CrossRefGoogle Scholar
  93. Hutchings JA (2011) Old wine in new bottles: reaction norms in salmonid fishes. Heredity 106:421–437PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hutchings J, Myers R (1994) The evolution of alternative mating strategies in variable environments. Evol Ecol 8:256–268CrossRefGoogle Scholar
  95. Johnson SW, Thedinga F, Koski KV (1992) Life history of juvenile ocean-type Chinook salmon (Oncorhynchus tshawytscha) in the Situk River, Alaska. Can J Fish Aquat Sci 49:2621–2629CrossRefGoogle Scholar
  96. Johnson J, Johnson T, Copeland T (2012) Defining life histories of precocious male parr, minijack, and jack Chinook salmon using scale patterns. Trans Am Fish Soc 141:1545–1556CrossRefGoogle Scholar
  97. Johnson GE, Ploskey GR, Sather NK, Teel DJ (2015) Residence times of juvenile salmon and steelhead in off-channel tidal freshwater habitats, Columbia River, USA. Can J Fish Aquat Sci 72:1–13CrossRefGoogle Scholar
  98. Jones KK, Cornwell TJ, Bottom DL, Campbell LA, Stein S (2014) The contribution of estuary-resident life histories to the return of adult Oncorhynchus kisutch. J Fish Biol 85:52–80. doi: 10.1111/jfb.12380 PubMedCrossRefGoogle Scholar
  99. Kareiva P, Marvier M, McClure M (2000) Recovery and management options for spring/summer Chinook in the Columbia River Basin. Science 290:977–979PubMedCrossRefGoogle Scholar
  100. Keefer ML, Caudill CC (2014) Homing and straying by anadromous salmonids: a review of mechanisms and rates. Rev Fish Biol Fish 24:333–368. doi: 10.1007/s11160-013-9334-6 CrossRefGoogle Scholar
  101. Keefer ML, Taylor GA, Garletts DF et al (2012) Reservoir entrapment and dam passage mortality of juvenile Chinook salmon in the Middle Fork Willamette River. Ecol Freshw Fish 21:222–234. doi: 10.1111/j.1600-0633.2011.00540.x CrossRefGoogle Scholar
  102. Keefer ML, Taylor GA, Garletts DF et al (2013) High-head dams affect downstream fish passage timing and survival in the Middle Fork Willamette River. River Res App 29:483–492CrossRefGoogle Scholar
  103. Keefer ML, Clabough TS, Jepson MA et al (2015) Thermal exposure of adult Chinook salmon in the Willamette River. J Thermal Biol 48:11–20CrossRefGoogle Scholar
  104. Kendall NW, Mcmillan JR, Sloat MR et al (2015) Anadromy and residency in steelhead and rainbow trout (Oncorhynchus mykiss): a review of the processes and patterns. Can J Fish Aquat Sci 72:319–342CrossRefGoogle Scholar
  105. Kjelson MA, Raquel PF, Fisher FW (1982) Life history of fall-run juvenile Chinook salmon, Oncorhynchus tshawytscha, in the Sacramento-San Joaquin estuary, California. In: Kennedy VS (ed) Estuarine comparisons. Academic Press, New York, pp 393–411CrossRefGoogle Scholar
  106. Knudsen CM, Schroder SL, Busack CA et al (2006) Comparison of life history traits between first-generation hatchery and wild upper Yakima River spring Chinook salmon. Trans Am Fish Soc 135:1130–1144. doi: 10.1577/T05-121.1 CrossRefGoogle Scholar
  107. Koehler ME, Fresh KL, Beauchamp DA, Cordell JR, Simenstad CA, Seiler DE (2006) Diet and bioenergetics of lake-rearing juvenile Chinook salmon in Lake Washington. Trans Am Fish Soc 135:1580–1591. doi: 10.1577/T05-178.1 CrossRefGoogle Scholar
  108. Kwain W, Thomas E (1984) The first evidence of spring spawning by Chinook salmon in Lake Superior. N Am J Fish Manage 4:227–228CrossRefGoogle Scholar
  109. Larsen DA, Harstad DL, Strom CR et al (2013) Early life history variation in hatchery- and natural-origin spring Chinook salmon in the Yakima River, Washington. Trans Am Fish Soc 142:540–555. doi: 10.1080/00028487.2012.750626 CrossRefGoogle Scholar
  110. Levings CD, McAllister CD, Chang BD (1986) Differential use of the Campbell River estuary, British Columbia by hatchery-reared juvenile Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 4:1386–1397CrossRefGoogle Scholar
  111. Levy DA, Northcote TG (1982) Juvenile salmon residency in a marsh area of the Fraser River estuary. Can J Fish Aquat Sci 39:270–276CrossRefGoogle Scholar
  112. Limm MP, Marchetti MP (2009) Juvenile Chinook salmon (Oncorhynchus tshawytscha) growth in off-channel and main-channel habitats on the Sacramento River, CA using otolith increment widths. Env Biol Fishes 85:141–151. doi: 10.1007/s10641-009-9473-8 CrossRefGoogle Scholar
  113. Lindsay RB, Kenaston KR, Schroeder RK, et al (1997) Spring Chinook salmon in the Willamette and Sandy rivers. Annual progress report, Oregon Department of Fish and Wildlife, CorvallisGoogle Scholar
  114. Lister DB, Walker CE, Giles MA (1971) Cowichan River Chinook salmon escapements and juvenile production, 1965–1967. Pacific Region Technical Report 1971-3, Canada Department of Fisheries and Forestry, Pacific RegionGoogle Scholar
  115. Lorenzen K, Beveridge MCM, Mangel M (2012) Cultured fish: integrative biology and management of domestication and interactions with wild fish. Biol Rev 87:639–660. doi: 10.1111/j.1469-185X.2011.00215.x PubMedCrossRefGoogle Scholar
  116. Matala AP, Hess JE, Narum SR (2011) Resolving adaptive and demographic divergence among Chinook salmon populations in the Columbia River Basin. Trans Am Fish Soc 140:783–807CrossRefGoogle Scholar
  117. Mattson CR (1962) Early life history of Willamette river spring Chinook salmon. Fish Commission of Oregon, PortlandGoogle Scholar
  118. McCauley DW, Docker MF, Whyard S, Li W (2015) Lampreys as diverse model organisms in the genomics era. Bioscience. doi: 10.1093/biosci/biv139 PubMedPubMedCentralGoogle Scholar
  119. McClure MM, Holmes EE, Sanderson BL, Jordan CE (2003) A large-scale, multispecies status, assessment: anadromous salmonids in the Columbia River Basin. Ecol Appl 13:964–989CrossRefGoogle Scholar
  120. McClure MM, Carlson SM, Beechie TJ et al (2008) Evolutionary consequences of habitat loss for Pacific anadromous salmonids. Evol Appl 1:300–318. doi: 10.1111/j.1752-4571.00030.x PubMedPubMedCentralCrossRefGoogle Scholar
  121. McCullough DA (1999) A review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of salmonids, with special reference to Chinook salmon. Columbia River Inter-tribal Fish Commission, PortlandGoogle Scholar
  122. McLean JE, Bentzen P, Quinn TP (2005) Nonrandom, size- and timing-biased breeding in a hatchery population of steelhead trout. Conserv Biol 19:446–454CrossRefGoogle Scholar
  123. McPhee MV, Whited DC, Kuzishchin KV, Stanford JA (2014) The effects of riverine physical complexity on anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss around the Pacific Rim. J Fish Biol 85:132–150. doi: 10.1111/jfb.12286 PubMedCrossRefGoogle Scholar
  124. Metcalfe NB, Thorpe JE (1990) Determinants of geographical variation in the age of seaward-migrating salmon, Salmo salar. J Anim Ecol 59:135–145CrossRefGoogle Scholar
  125. Miller RJ, Brannon EL (1982) The origin and development of life history patterns in pacific salmonids. In: Brannon EL, Salo EO (eds) Proceedings of the salmon and trout migratory behavior symposium. University of Washington Press, Seattle, pp 296–309Google Scholar
  126. Miller JA, Simenstad CA (1997) A comparative assessment of a natural and created estuarine slough as rearing habitat for juvenile chinook and coho salmon. Estuaries 20:792–806CrossRefGoogle Scholar
  127. Miller JA, Gray A, Merz J (2010) Quantifying the contribution of juvenile migratory phenotypes in a population of Chinook salmon Oncorhynchus tshawytscha. Mar Ecol Prog Ser 408:227–240. doi: 10.3354/meps08613 CrossRefGoogle Scholar
  128. Miller JA, Butler VL, Simenstad CA, Backus DH, Kent AJR (2011) Life history variation in upper Columbia River Chinook salmon (Oncorhynchus tshawytscha): a comparison using modern and 500-year-old archaeological otoliths. Can J Fish Aquat Sci 617:603–617CrossRefGoogle Scholar
  129. Mobrand LE, Lichatowich JA, Lestelle LC, Vogel TS (1997) An approach to describing ecosystem performance “through the eyes of salmon”. Can J Fish Aquat Sci 54:2964–2973CrossRefGoogle Scholar
  130. Moore JW, Yeakel JD, Peard D, Lough J, Beere M (2014) Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J Anim Ecol 83:1035–1046. doi: 10.1111/1365-2656.12212 PubMedCrossRefGoogle Scholar
  131. Moran P, Teel DJ, Banks MA et al (2013) Divergent life-history races do not represent Chinook salmon coast-wide: the importance of scale in Quaternary biogeography. Can J Fish Aquat Sci 70:415–435CrossRefGoogle Scholar
  132. Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:149–161CrossRefGoogle Scholar
  133. Muir WD, Zaugg WS, Giorgi AE, McCutdheon S (1994) Accelerating smolt development and downstream movement in yearling Chinook salmon with advanced photoperiod and increased temperature. Aquaculture 123:387–399CrossRefGoogle Scholar
  134. Murray CB, Rosenau ML (1989) Rearing of juvenile Chinook salmon in nonnatal tributaries of the lower Fraser River, British Columbia. Trans Am Fish Soc 118:284–289. doi: 10.1577/1548-8659(1989)118<0284:ROJCSI>2.3.CO;2 CrossRefGoogle Scholar
  135. Myers JM, Kope RG, Bryant GJ et al (1998) Status review of Chinook salmon from Washington, Idaho, Oregon, and California. US Department of Commerce, NOAA Tech. Memo. NMFS-NWFSC-35Google Scholar
  136. Naiman RJ, Dudgeon D (2011) Global alteration of freshwaters: influences on human and environmental well-being. Ecol Res 26:865–873. doi: 10.1007/s11284-010-0693-3 CrossRefGoogle Scholar
  137. Narum SR, Campbell NR (2015) Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genom 16:103. doi: 10.1186/s12864-015-1246-5 CrossRefGoogle Scholar
  138. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847PubMedPubMedCentralCrossRefGoogle Scholar
  139. Nehlsen W, Williams JE, Lichatowich JA (1991) Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16(2):4–21CrossRefGoogle Scholar
  140. Nichols KM, Edo AF, Wheeler PA, Thorgaard GH (2008) The genetic basis of smoltification-related traits in Oncorhynchus mykiss. Genetics 179:1559–1575. doi: 10.1534/genetics.107.084251 PubMedPubMedCentralCrossRefGoogle Scholar
  141. NRC (National Research Council) (1996) Upstream. Salmon and society in the Pacific Northwest. National Academy Press, Washington, DCGoogle Scholar
  142. O’Malley KG, Jacobson DP, Kurth R, Dill AJ, Banks MA (2013) Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow. Evol Appl 6:1184–1194. doi: 10.1111/eva.12095 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ohms H, Sloat M, Reeves G, Jordan CE, Dunham JB (2013) Influence of sex, migration distance, and latitude on life history expression in steelhead and rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 71:70–80. doi: 10.1139/cjfas-2013-0274 CrossRefGoogle Scholar
  144. Oomen RA, Hutchings JA (2015) Genetic variability in reaction norms in fishes. Env Rev 23:353–366CrossRefGoogle Scholar
  145. Páez DJ, Brisson-Bonenfant C, Rossignol O, Guderley HE, Bernatchez L, Dodson JJ (2011) Alternative developmental pathways and the propensity to migrate: a case study in the Atlantic salmon. J Evol Biol 24:245–255. doi: 10.1111/j.1420-9101.2010.02159.x PubMedCrossRefGoogle Scholar
  146. Pearsons TN, Johnson CL, James BB, Temple GM (2009) Abundance and distribution of precociously mature male spring Chinook salmon of hatchery and natural origin in the Yakima river. North Am J Fish Manag 29:778–790. doi: 10.1577/M08-069.1 CrossRefGoogle Scholar
  147. Perkins TA, Jager HI (2011) Falling behind: delayed growth explains life-history variation in Snake River fall Chinook salmon. Trans Am Fish Soc 140:959–972. doi: 10.1080/00028487.2011.599257 CrossRefGoogle Scholar
  148. Piché J, Hutchings JA, Blanchard W (2008) Genetic variation in threshold reaction norms for alternative reproductive tactics in male Atlantic salmon, Salmo salar. Proc R Soc B 275:1571–1575. doi: 10.1098/rspb.2008.0251 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Principe ND, Kraft CE, Mills EL (2007) Gastric evacuation and daily ration of naturally produced age-0 Chinook salmon in Lake Ontario. Trans Am Fish Soc 136:1206–1215. doi: 10.1577/T06-125.1 CrossRefGoogle Scholar
  150. Quinn TP (2005) The behavior and ecology of Pacific salmon and trout. UBC Press, SeattleGoogle Scholar
  151. Quinn TP, Adams DG (1996) Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77:1151–1162CrossRefGoogle Scholar
  152. Quinn TP, Hodgson S, Peven C (1997) Temperature, flow, and the migration of adult sockeye salmon (Oncorhynchus nerka) in the Columbia River. Can J Fish Aquat Sci 54:1349–1360CrossRefGoogle Scholar
  153. Quinn TP, Unwin MJ, Kinnison MT (2000) Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced Chinook salmon populations. Evolution 54:1372–1385PubMedCrossRefGoogle Scholar
  154. Quinn TP, Peterson JA, Gallucci VF, Hershberger WK, Brannon EL (2002) Artificial selection and environmental change: countervailing factors affecting the timing of spawning by coho and chinook salmon. Trans Am Fish Soc 131:591–598. doi: 10.1577/1548-8659(2002)131<0591:ASAECC>2.0.CO;2 CrossRefGoogle Scholar
  155. Quinn TP, Shaffer JA, Brown J, Harris N, Byrnes C, Crain P (2014) Juvenile Chinook salmon, Oncorhynchus tshawytscha, use of the Elwha river estuary prior to dam removal. Environ Biol Fishes 97:731–740. doi: 10.1007/s10641-013-0173-z CrossRefGoogle Scholar
  156. Quinn TP, McGinnity P, Reed TE (in press) The paradox of ‘premature migration’ by adult anadromous salmonid fishes: patterns and hypotheses. Can J Fish Aquat SciGoogle Scholar
  157. Rebenack JJ, Ricker S, Anderson C, Wallace M, Ward DM (2015) Early emigration of juvenile coho salmon: implications for population monitoring. Trans Am Fish Soc 144:163–172. doi: 10.1080/00028487.2014.982258 CrossRefGoogle Scholar
  158. Reimers PE (1971) The length of residence of juvenile fall Chinook salmon in the Sixes River. Thesis, Oregon State University, OregonGoogle Scholar
  159. Reisenbichler RR, Rubin SP (1999) Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations. ICES J Mar Sci 56:459–466. doi: 10.1006/jmsc.1999.0455 CrossRefGoogle Scholar
  160. Rieman BE, Beamesderfer RC, Vigg S, Poe TP (1991) Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River. Trans Am Fish Soc 120:448–458CrossRefGoogle Scholar
  161. Rikardsen AH, Elliott JM (2000) Variations in juvenile growth, energy allocation and life-history strategies of two populations of Arctic char in north Norway. J Fish Biol 56:328–346CrossRefGoogle Scholar
  162. Roff DA (1996) The evolution of threshold traits in animals. Q Rev Biol 71:3–35CrossRefGoogle Scholar
  163. Ruckelshaus MH, Levin P, Johnson JB, Kareiva PM (2002) The Pacific salmon wars: What science brings to the challenge of recovering species. Ann Rev Ecol Syst 33:665–706CrossRefGoogle Scholar
  164. Satterthwaite WH, Beakes MP, Collins EM et al (2009) Steelhead life history on California’s central coast: insights from a state-dependent model. Trans Am Fish Soc 138:532–548. doi: 10.1577/T08-164.1 CrossRefGoogle Scholar
  165. Scheuerell MD (2005) Influence of juvenile size on the age at maturity of individually marked wild Chinook salmon. Trans Am Fish Soc 134:999–1004. doi: 10.1577/T04-206.1 CrossRefGoogle Scholar
  166. Schindler DE, Hilborn R, Chasco B et al (2010) Population diversity and the portfolio effect in an exploited species. Nature 465:609–612PubMedCrossRefGoogle Scholar
  167. Schroeder RK, Whitman LD, Cannon B, Olmsted P (2016) Juvenile life-history diversity and population stability of spring Chinook salmon in the Willamette River Basin, Oregon. Can J Fish Aquat Sci. doi: 10.1139/cjfas-2015-0314 Google Scholar
  168. Scrivener C, Brown TC, Andersen BC (1994) Juvenile Chinook salmon (Oncorhynchus tshawytscha) utilization of Hawks Creek, a small and nonnatal tributary of the upper Fraser River. Can Field Nat 51:1139–1146Google Scholar
  169. Secor DH (2007) The year-class phenomenon and the storage effect in marine fishes. J Sea Res 57:91–103. doi: 10.1016/j.seares.2006.09.004 CrossRefGoogle Scholar
  170. Shreffler DK, Simenstad CA, Thom RM (1990) Temporary residence by juvenile salmon in a restored estuarine wetland. Can J Fish Aquat Sci 47:2079–2084CrossRefGoogle Scholar
  171. Shrimpton JM, Warren KD, Todd NL et al (2014) Freshwater movement patterns by juvenile Pacific salmon Oncorhynchus spp. before they migrate to the ocean: Oh the places you’ll go! J Fish Biol 85:987–1004. doi: 10.1111/jfb.12468 PubMedCrossRefGoogle Scholar
  172. Skulason S, Kristjansson BK (2016) The origin and significance of reproductive isolation for processes of divergence. In: Vladi T, Petersson E (eds) Evolutionary Ecology of the Atlantic Salmon. CRC Press, Boca Raton, pp 3–25Google Scholar
  173. Sloat MR, Reeves GH (2014) Demographic and phenotypic responses of juvenile steelhead trout to spatial predictability of food resources. Ecology 95:2423–2433CrossRefGoogle Scholar
  174. Sloat MR, Fraser DJ, Dunham JB et al (2014a) Ecological and evolutionary patterns of freshwater maturation in Pacific and Atlantic salmonines. Rev Fish Biol Fish 24:689–707CrossRefGoogle Scholar
  175. Sloat MR, Reeves GH, Jonsson B (2014b) Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Can J Fish Aquat Sci 71:491–501CrossRefGoogle Scholar
  176. Sommer TR, Nobriga ML, Harrell WC, Batham W, Kimmerer WJ (2001) Floodplain rearing of juvenile Chinook salmon: evidence of enhanced growth and survival. Can J Fish Aquat Sci 58:325–333. doi: 10.1139/cjfas-58-2-325 CrossRefGoogle Scholar
  177. Stearns SC (1976) Life history tactics: a review of the ideas. Q Rev Biol 51:3–47PubMedCrossRefGoogle Scholar
  178. Stearns SC (1992) The evolution of life histories. Oxford University Press, LondonGoogle Scholar
  179. Tabor RA, Scheurer JA, Gearns HA, McCoy CM (2011a) Use of nonnatal tributaries for lake-rearing juvenile Chinook salmon in the Lake Washington basin, Washington. Northwest Sci 85:476–490CrossRefGoogle Scholar
  180. Tabor RA, Fresh KL, Piaskowski RM, Gearns HA, Hayes DB (2011b) Habitat use by juvenile Chinook salmon in the nearshore areas of Lake Washington: effects of depth, lakeshore development, substrate, and vegetation. North Am J Fish Manag 31:700–713. doi: 10.1080/02755947.2011.611424 CrossRefGoogle Scholar
  181. Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A (2010) Control of puberty in farmed fish. Gen Comp 165:483–515CrossRefGoogle Scholar
  182. Taylor EB (1990) Phenotypic correlates of life-history variation in juvenile Chinook salmon, Oncorhynchus tshawytscha. J Anim Ecol 59:455–468CrossRefGoogle Scholar
  183. Teel DJ, Bottom DL, Hinton SA et al (2014) Genetic identification of Chinook salmon in the Columbia river estuary: stock-specific distributions of juveniles in shallow tidal freshwater habitats. N Am J Fish Manag 34:621–641. doi: 10.1080/02755947.2014.901258 CrossRefGoogle Scholar
  184. Templin WD, Seem JE, Jasper JR, Barclay AW, Seeb LW (2011) Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies. Mol Ecol Res 11(Suppl 1):226–246. doi: 10.1111/j.1755-0998.2010.02968.x CrossRefGoogle Scholar
  185. Thériault V, Dunlop ES, Dieckmann U, Bernatchez L, Dodson JJ (2008) The impact of fishing-induced mortality on the evolution of alternative life-history tactics in brook charr. Evol Appl 1:409–423. doi: 10.1111/j.1752-4571.2008.00022.x PubMedPubMedCentralCrossRefGoogle Scholar
  186. Thorpe JE, Mangel M, Metcalfe NB, Huntingford FA (1998) Modeling the proximate basis of salmonid life history variation, with application to Atlantic salmon, Salmo salar. Evol Ecol 12:581–599CrossRefGoogle Scholar
  187. Thrower FP, Hard JJ, Joyce JE (2004) Genetic architecture of growth and early life-history transitions in anadromous and derived freshwater populations of steelhead. J Fish Biol 65:286–307. doi: 10.1111/j.1095-8649.2004.00551.x CrossRefGoogle Scholar
  188. Tiffan KF, Kock TJ, Connor WP, Steinhorst RK, Rondorf DW (2009) Behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir. J Fish Biol 74:1562–1579. doi: 10.1111/j.1095-8649.2009.02228.x PubMedCrossRefGoogle Scholar
  189. Tiffan KF, Erhardt JM, John SJ (2014) Prey availability, consumption, and quality contribute to variation in growth of subyearling Chinook salmon rearing in riverine and reservoir habitats. Trans Am Fish Soc 143:219–229. doi: 10.1080/00028487.2013.839958 CrossRefGoogle Scholar
  190. Tilman D, Lehman CL, Thomson KT (1997a) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94(5):1857–1861PubMedPubMedCentralCrossRefGoogle Scholar
  191. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997b) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302CrossRefGoogle Scholar
  192. Torgersen CE, Price DM, Li HW, Mcintosh BA (1999) Multiscale thermal refugia and stream habitat associations of Chinook salmon in northeastern Oregon. Ecol Appl 9:301–319CrossRefGoogle Scholar
  193. Unwin MJ, Kinnison MT, Quinn TP (1999) Exceptions to semelparity: postmaturation survival, morphology, and energetics of male Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 56:1172–1181. doi: 10.1139/f99-045 CrossRefGoogle Scholar
  194. Volk EC, Bottom DL, Jones KK, Simenstad CA (2010) Reconstructing juvenile Chinook Salmon life history in the Salmon River estuary, Oregon, using otolith microchemistry and microstructure. Trans Am Fish Soc 139:37–41CrossRefGoogle Scholar
  195. Walsworth TE, Schindler DE, Griffiths JR, Zimmerman CE (2014) Diverse juvenile life-history behaviours contribute to the spawning stock of an anadromous fish population. Ecol Freshw Fish. doi: 10.1111/eff.12135 Google Scholar
  196. Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Mar Fish Rev 53(3):11–22Google Scholar
  197. Waples RS (1995) Evolutionarily significant units and the conservation of biological diversity under the endangered species act. Am Fish Soc Symp 17:8–27Google Scholar
  198. Waples RS, Teel DJ, Myers JM, Marshall AR (2004) Life-history divergence in Chinook Salmon: historic contingency and parallel evolution. Evolution 58:386–403PubMedCrossRefGoogle Scholar
  199. Waples RS, Pess GR, Beechie T (2008) Evolutionary history of Pacific salmon in dynamic environments. Evol Appl 1:189–206PubMedPubMedCentralCrossRefGoogle Scholar
  200. Welch DW, Ishida Y, Nagasawa K (1998) Thermal limits and ocean migrations of sockeye salmon (Oncorhynchus nerka): long-term consequences of global warming. Can J Fish Aquat Sci 55:937–948CrossRefGoogle Scholar
  201. Wells BK, Rieman BE, Clayton JL, Horan DL, Jones CM (2003) Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d’Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Trans Am Fish Soc 132:409–424. doi: 10.1577/15488659(2003)132<0409:RBWOAS>2.0.CO;2 CrossRefGoogle Scholar
  202. Wilbur HM, Rudolf VHW (2006) Life history evolution in uncertain environments: bet hedging in time. Am Nat 168:398–411PubMedCrossRefGoogle Scholar
  203. Williams SE, Hoffman EA (2009) Minimizing genetic adaption in captive breeding programs: a review. Biol Conserv 142:2388–2400. doi: 10.1016/j.biocon.2009.05.034 CrossRefGoogle Scholar
  204. Williams JG, Zabel RW, Waples RS, Hutchings JA, Connor WP (2008) Potential for anthropogenic disturbances to influence evolutionary change in the life history of a threatened salmonid. Evol Appl 1:271–285. doi: 10.1111/j.1752-4571.2008.00027.x PubMedPubMedCentralCrossRefGoogle Scholar
  205. Winemiller KO (2005) Life history strategies, population regulation, and implications for fisheries management. Can J Fish Aquat Sci 62:872–885CrossRefGoogle Scholar
  206. Yoshiyama RM, Fisher FW, Moyle PB (1998) Historical abundance and decline of Chinook salmon in the central valley region of California. N Am J Fish Manag 18:487–521. doi: 10.1577/1548-8675(1998)018<0487 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Samuel L. Bourret
    • 1
    • 2
  • Christopher C. Caudill
    • 1
  • Matthew L. Keefer
    • 1
  1. 1.Department of Fish and Wildlife Sciences, College of Natural ResourcesUniversity of IdahoMoscowUSA
  2. 2.Montana Fish Wildlife and ParksKalispellUSA

Personalised recommendations