Reviews in Fish Biology and Fisheries

, Volume 25, Issue 3, pp 485–502 | Cite as

Misidentification of bluefin tuna larvae: a call for caution and taxonomic reform

  • Gregory Neils Puncher
  • Francisco Alemany
  • Haritz Arrizabalaga
  • Alessia Cariani
  • Fausto Tinti


The international effort to prevent the collapse of Atlantic bluefin tuna (BFT, Thunnus thynnus, Scombridae) stocks exemplifies the challenges associated with modern marine resource conservation. Rampant mismanagement, under-reporting and illegal, unreported and unregulated fishing led to decades of over-exploitation in the BFT fishery. Surveys of larval abundance in the Gulf of Mexico and the Mediterranean Sea have been used as a proxy for both spawning biomass and recruitment by researchers working to improve estimates of stock abundance. Recent genetic barcoding studies have revealed that species identification errors are common among larvae surveys that use morphology-based taxonomy alone. Misidentification of larvae can lead to uncertainty about the spatial distribution of a species, confusion over life history traits and population dynamics, and potentially disguise the collapse or recovery of localized spawning sites. In an effort to identify the source of these errors, we review several weaknesses in modern morphology-based taxonomy including demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic community to embrace advances in digital communications and a general scarcity of modern user-friendly materials. Recent advances in molecular techniques useful for specimen identification and population studies are discussed at length. We advocate a more constructive integration of morphology-based taxonomy and barcoding in order to add confidence to larval surveys and to strengthen associated fisheries management.


Bluefin tuna Fish larvae Barcoding Misidentification Taxonomy Fisheries 



This work was co-funded by the MARES Joint Doctorate programme selected under Erasmus Mundus and coordinated by Ghent University (FPA 2011-0016). Many thanks to Antonio Di Natale, Jerry Scott, John Lamkin and Edorta Aranguena for helping to assemble the various tuna taxonomic keys. Thanks are also due to the IEO researchers in charge of the tuna rearing experiments at the IEO facilities in Mazarrón, F. de la Gándara, A. Ortega and P. Reglero, for providing the images of BFT larvae. Finally, we thank the three anonymous reviewers for their detailed and helpful suggestions.


  1. Aguilar R, Lastra P, Madina M et al (2009) Bluefin tuna larval survey: 2008 Oceana-MarViva Mediterranean Project, pp 76Google Scholar
  2. Akyuz EF, Artuz G (1957) Some observations on the biology of tuna (Thunnus thynnus) caught in Turkish waters. Proc Tech Pap Gen Fish Counc Mediterr Rome 4(14):93–99Google Scholar
  3. Albaina A, Iriondo M, Velado I et al (2013) Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim Genet 44(6):678–692PubMedGoogle Scholar
  4. Alemany F (1997) Ictioplancton del Mar Balear. PhD Thesis, University of Illes Balears, Palma de Mallorca, SpainGoogle Scholar
  5. Alemany F (2008) Relevance of the Balearic Sea for the spawning of the bluefin tuna in the Mediterranean Sea. Spatial management to support recovery of the Atlantic bluefin tuna in the Mediterranean The case for implementing a bluefin tuna sanctuary (or permanent fishing closure) in the Balearic Sea. WWF, Rome, pp 6–38Google Scholar
  6. Alemany F, Deudero S, Morales-Nin B et al (2006) Influence of physical environmental factors on the composition and horizontal distribution of summer larval fish assemblages off Mallorca island (Balearic archipelago, western Mediterranean). J Plankton Res 28:473–487Google Scholar
  7. Alemany F, Quintanilla L, Velez-Belchi P et al (2010) Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Prog Oceanogr 86:21–38Google Scholar
  8. Alvarado Bremer JR, Naseri I, Ely B (1997) Orthodox and unorthodox phylogenetic relationships among tunas revealed by the nucleotide sequence analysis of the mitochondrial DNA control region. J Fish Biol 50(3):540–554Google Scholar
  9. Alvarado Bremer JR, Viñas J, Mejuto J, Ely B, Pla C (2005) Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol Phylogenet Evol 36:169–187PubMedGoogle Scholar
  10. Amish SJ, Hohenlohe PA, Painter S, Leary RF, Muhlfeld C, Allendorf FW, Luikart G (2012) RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays. Mol Ecol Resour 12(4):653–660PubMedGoogle Scholar
  11. Aranda G, Abascal FJ, Varela JL, Medina A (2013) Spawning behaviour and post-spawning migration patterns of Atlantic bluefin tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS ONE 8(10):e76445PubMedCentralPubMedGoogle Scholar
  12. Armstrong MJ, Connolly P, Nash RDM et al (2001) An application of the annual egg production method to estimate the spawning biomass of cod (Gadus morhua L.), plaice (Pleuronectes platessa L.) and sole (Solea solea L.) in the Irish Sea. ICES J Mar Sci 58(1):183–203Google Scholar
  13. Baglin RE (1976) A preliminary study of the gonadal development and fecundity of the western Atlantic bluefin tuna. ICCAT Col Vol Sci Pap 5:279–289Google Scholar
  14. Baldwin CC, Brito BJ, Smith DG, Weigt LA, Escobar-Briones E (2011) Identification of early life-history stages of Caribbean Apogon (Perciformes: Apogonidae) through DNA barcoding. Zootaxa 3133:1–36Google Scholar
  15. Boero F (2001) Light after dark: the partnership for enhancing expertise in taxonomy. Trends Ecol Evol 16:266PubMedGoogle Scholar
  16. Boley RM, Heist EJ (2011) Larval surveys indicate low levels of endangered pallid sturgeon reproduction in the middle Mississippi River. Trans Am Fish Soc 140(6):1604–1612Google Scholar
  17. Catalán IA, Tejedor A, Alemany F, Reglero P (2011) Trophic ecology of Atlantic bluefin tuna Thunnus thynnus larvae. J Fish Biol 78:1545–1560PubMedGoogle Scholar
  18. Chow S, Kishino H (1995) Phylogenetic relationships between tuna species of the genus Thunnus (Scombridae: Teleostei): inconsistent implications from morphology, nuclear and mitochondrial genomes. J Mol Evol 41(6):741–748PubMedGoogle Scholar
  19. Chow S, Nohara K, Tanabe T et al (2003) Genetic and morphological identification of larval and small juvenile tunas (Pisces: Scombridae) caught by a mid-water trawl in the western Pacific. Bull Fish Res Agency Jpn 8:1–14Google Scholar
  20. Chow S, Nakagawa T, Suzuki N, Takeyama H, Matsunaga T (2006) Phylogenetic relationships among Thunnus species inferred from rDNA ITS1 sequence. J Fish Biol 68:24–35Google Scholar
  21. Collette BB (1999) Mackerels, molecules, and morphology. In: Séret B, Sire JY (ed) Proceedings of the fifth Indo-Pacific fisheries conference (Proceedings of the Fifth Indo-Pacific Fisheries Conference, Noumea, 03 November–08 November, 1997) Société française d’ichtyologie, pp 149–164Google Scholar
  22. Cuveliers EL, Volckaert FAM, Rijnsdorp AD, Larmuseau MHD, Maes GE (2011) Temporal genetic stability and high effective population size despite fisheries-induced life-history trait evolution in the North Sea sole. Mol Ecol 20(17):3555–3568PubMedGoogle Scholar
  23. D’Alessandro EK, Sponaugle S, Serafy JE (2010) Larval ecology of a suite of snappers (family: Lutjanidae) in the Straits of Florida, western Atlantic Ocean. Mar Ecol Prog Ser 410:159–175Google Scholar
  24. Daniel LB III, Graves JE (1994) Morphometric and genetic identification of eggs of spring-spawning sciaenids in lower Chesapeake Bay. Fish B NOAA 92(2):254–261Google Scholar
  25. de la Gandara F, Mylonas CC, Coves D et al (2010) Seedling production of Atlantic bluefin tuna (ABFT) Thunnus thynnus The SELFDOTT project. In: Joint international symposium of Kinki University and Setouchi town on the 40th anniversary of Pacific bluefin tuna aquaculture, towards the sustainable aquaculture of bluefin tuna, October 15–16 2010. Amami, Japan, pp 45–52Google Scholar
  26. Dicenta A (1975) Identificación de algunos huevos y larvas de túnidos en el Mediterráneo. Boletín Instituto Español de Oceanografía 198:1–22 (in Spanish)Google Scholar
  27. Drywa A, Poćwierz-Kotus A, Dobosz S, Kent MP, Lien S, Wenne R (2014) Identification of multiple diagnostic SNP loci for differentiation of three salmonid species using SNP-arrays. Mar Gen 15:5–6Google Scholar
  28. Duclerc J, Sacchi J, Piccinetti C, Piccinetti-Manfrin G, Dicenta A, Barrois J-M (1973) Nouvelles données sur la reproduction du thon rouge (Thunnus thynnus L.) et d´autres espèces de thonidés en Mediterranée. Revue Travaux Pêches maritimes 37(2):163–176 (in French)Google Scholar
  29. Durand JD, Diatta MA, Diop K, Trape S (2010) Multiplex 16S rRNA haplotype-specific PCR, a rapid and convenient method for fish species identification: an application to West African Clupeiform larvae. Mol Ecol Resour 10(3):568–572PubMedGoogle Scholar
  30. Ehrenbaum E (1924) Scombriformes. In: Report on the Danish oceanographical expeditions 1908–1910 to the mediterranean and adjacent seas, vol 2. A. F. Høst, Copenhagen, pp 1–42Google Scholar
  31. Fahay MP (1983) Guide to the early stages of marine fishes occurring in the western North Atlantic Ocean, Cape Hatteras to the southern Scotian Shelf. J Northwest Atl Fish Sci 4:423Google Scholar
  32. Fahay MP (2007) Early stages of fishes in the Western North Atlantic Ocean, vol 1, 1st edn. Northwest Atlantic Fisheries Organization, DartmouthGoogle Scholar
  33. Fox CJ, Taylor MI, Pereyra R, Villasana MI, Rico C (2005) TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods. Mol Ecol 14(3):879–884PubMedGoogle Scholar
  34. Fritzsche RA (1978) Development of fishes of the mid-Atlantic bight: an atlas of egg, larval and juvenile stages. Volume V Chaetodontidae through Ophidiidae. U.S. Fish Wildl. Serv. Biol. Serv. Prog. FWS/OBS-78/12, 340 ppGoogle Scholar
  35. Froese R, Pauly D (ed) (2015) Fishbase World Wide Web electronic publication, version (02/2015)
  36. Fromentin JM, Bonhommeau S, Arrizabalaga H, Kell LT (2014) The spectre of uncertainty in management of exploited fish stocks: the illustrative case of Atlantic bluefin tuna. Mar Policy 47:8–14Google Scholar
  37. Galuardi B, Royer F, Golet W, Logan J, Neilson J, Lutcavage M (2010) Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Can J Fish Aquat Sci 67:966–976Google Scholar
  38. García A, de la Serna Ernst JM, López Jurado J, Alemany F, Rodríguez Marin E (2002) Bluefin tuna egg and larval survey in the Balearic Sea, June 2001 (TUNIBAL 06/01). ICCAT Col Vol Sci Pap 54:425–431Google Scholar
  39. García A, Alemany F, Velez-Belchí P et al (2005a) Characterization of the bluefin tuna spawning habitat off the Balearic Archipelago in relation to key hydrographic features and associated environmental conditions. ICCAT Col Vol Sci Pap 58:535–549Google Scholar
  40. García A, Alemany F, de la Serna JM et al (2005b) Preliminary results of the 2004 bluefin tuna larval surveys off different Mediterranean sites (Balearic Archipelago, Levantine Sea and the Sicilian Channel). ICCAT Col Vol Sci 58:1261–1270Google Scholar
  41. García A, Cortés D, Quintanilla J, Ramirez T, Quintanilla L, Rodríguez JM, Alemany F (2013a) Climate-induced environmental conditions influencing interannual variability of Mediterranean bluefin (Thunnus thynnus) larval growth. Fish Oceanogr 22(4):273–287Google Scholar
  42. García A, Laíz R, Quintanilla J, Corregidor F, Alemany F (2013b) Report on abundant bluefin larval concentrations Thunnus thynnus) found off the shelf/slope area in the Spanish Levantine coasts Signs of recovery? ICCAT Col Vol Sci Pap 69(1):292–296Google Scholar
  43. Gibbon VE, Penny CB, Štrkalj G, Ruff P (2009) Brief Communication: minimally invasive bone sampling method for DNA analysis. Am J Phys Anthropol 139:596–599PubMedGoogle Scholar
  44. Giovanardi O, Romanelli M (2010) Preliminary note on tuna larvae in samples from the coasts of the southern-central Mediterranean Sea collected by the MV Arctic Sunrise in June/July 2008. ICCAT Col Vol Sci Pap 65:740–743Google Scholar
  45. Gleason LU, Burton RS (2012) High throughput molecular identification of fish eggs using multiplex suspension bead arrays. Mol Ecol Res 12(1):57–66Google Scholar
  46. Godfray HCJ (2002) Challenges for taxonomy. Nature 417:17–19PubMedGoogle Scholar
  47. Grüss A, Robinson J, Heppell SS, Heppell SA, Semmens BX (2014) Conservation and fisheries effects of spawning aggregation marine protected areas: what we know, where we should go, and what we need to get there. ICES J Mar Sci. doi: 10.1093/icesjms/fsu038 Google Scholar
  48. Guerra-García JM, Espinosa F, García-Gómez JC (2008) Trends in Taxonomy today: an overview about the main topics in Taxonomy. Zoologica baetica 19:15–49Google Scholar
  49. Hebert PDN, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321Google Scholar
  50. Heinisch G, Corriero A, Medina A et al (2008) Spatial–temporal pattern of bluefin tuna (Thunnus thynnus L. 1758) gonad maturation across the Mediterranean Sea. Mar Biol 154(4):623–630Google Scholar
  51. Hernandez FJ Jr, Powers SP, Graham WM (2010) Seasonal variability in ichthyoplankton abundance and assemblage composition in the northern Gulf of Mexico off Alabama. Fish B NOAA 108(2):193–207Google Scholar
  52. Hess JE, Campbell NR, Docker MF et al (2014) Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey. Mol Ecol Resour. doi: 10.1111/1755-0998.12283 PubMedGoogle Scholar
  53. Hobday AJ, Arrizabalaga H, Evans K, Nicol S, Young JW, Weng KC (2015) Impacts of climate change on marine top predators: advances and future challenges. Deep Sea Res Part II 113:1–8Google Scholar
  54. Hopkins GW, Freckleton RP (2002) Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim Conserv 5:245–249Google Scholar
  55. Houston RD, Taggart JB, Cézard T et al (2014) Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genom 15(1):90Google Scholar
  56. Hsieh CH, Reiss C, Watson W et al (2005) A comparison of long-term trends and variability in populations of larvae of exploited and unexploited fishes in the Southern California region: a community approach. Prog Oceanogr 67(1):160–185Google Scholar
  57. Hsieh CH, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G (2006) Fishing elevates variability in the abundance of exploited species. Nature 443(7113):859–862PubMedGoogle Scholar
  58. Hubert N, Delrieu-Trottin E, Irisson J-O, Meyer C, Planes S (2010) Identifying coral reef fish larvae through DNA barcoding: a test case with the families Acanthuridae and Holocentridae. Mol Phylogenet Evol 55:1195–1203PubMedGoogle Scholar
  59. Hyde JR, Lynn E, Humphreys R Jr, Musyl M, West AP, Vetter R (2005) Shipboard identification of fish eggs and larvae by multiplex PCR, and description of fertilized eggs of blue marlin, shortbill spearfish, and wahoo. Mar Ecol Prog Ser 286:269–277Google Scholar
  60. ICCAT (2006) Recommendation by ICCAT to establish a multi-annual recovery plan for bluefin tuna in the eastern Atlantic and Mediterranean. ICCAT 06-05Google Scholar
  61. ICCAT (2013) Report of the standing committee on research and statistics (SCRS) (Madrid, Spain, 30 September–4 October 2013), 344 ppGoogle Scholar
  62. ICCAT (2014a) Report of the standing committee on research and statistics (SCRS) (Madrid, Spain, 29 September–3 October 2014), 348 ppGoogle Scholar
  63. ICCAT (2014b) Recommendation by ICCAT amending the recommendation 13-07 by ICCAT to establish a multi-annual recovery plan for bluefin tuna in the eastern Atlantic and Mediterranean. ICCAT 14-04Google Scholar
  64. Ingram GW Jr, Richards WJ, Lamkin JT, Muhling B (2010) Annual indices of Atlantic bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico developed using delta-lognormal and multivariate models. Aquat Living Resour 23(01):35–47Google Scholar
  65. Ingram GW Jr, Alemany F, Álvarez D, García A (2013) Development of indices of larval bluefin tuna (Thunnus thynnus) in the western Mediterranean Sea. ICCAT Col Vol Sci Pap 69(2):1057–1076Google Scholar
  66. Isari S, Fragopoulu N, Somarakis S (2008) Interannual variability in horizontal patterns of larval fish assemblages in the northeastern Aegean Sea (eastern Mediterranean) during early summer. Estuar Coast Shelf Sci 79:607–619Google Scholar
  67. Jones PW, Martin FD, Hardy JD, Johnson GD, Fritzsche RA, Drewry GE (1978) Development of fishes of the mid-Atlantic Bight an atlas of egg, larval and juvenile stages, (Vol 5) US Department of the Interior: Fish and wildlife service, Washington, DC 340 ppGoogle Scholar
  68. Kaji T, Tanaka M, Takahashi Y, Oka M, Ishibashi N (1996) Preliminary observations on development of Pacific bluefin tuna Thunnus thynnus (Scombridae) larvae reared in the laboratory, with special reference to the digestive system. Mar Freshw Res 47:261–269Google Scholar
  69. Karakulak S, Oray I, Corriero A, Deflorio M, Santamaria N, Desantis S, De Metrio G (2004) Evidence of a spawning area for the bluefin tuna (Thunnus thynnus L.) in the eastern Mediterranean. J Appl Ichthyol 20(4):318–320Google Scholar
  70. Kawakami T, Aoyama J, Tsukamoto K (2010) Morphology of pelagic fish eggs identified using mitochondrial DNA and their distribution in waters west of the Mariana Islands. Environ Biol Fish 87(3):221–235Google Scholar
  71. Kendall AW Jr, Matarese AC (1994) Status of early life history descriptions of marine teleosts. Fish B NOAA 92(4):725–736Google Scholar
  72. Kim JK, Watson W, Hyde J, Lo N, Kim JY, Kim S, Kim YS (2010) Molecular identification of Ammodytes (PISCES, Ammodytidae) larvae, with ontogenetic evidence on separating populations. Genes Genom 32(5):437–445Google Scholar
  73. Ko HL, Wang YT, Chiu TS et al (2013) Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS ONE 8(1):e53451PubMedCentralPubMedGoogle Scholar
  74. Koched W, Hattour A, Alemany F, García A, Said K (2013) Spatial distribution of tuna larvae in the Gulf of Gabes (Eastern Mediterranean) in relation with environmental parameters. Mediterr Mar Sci 14:5–14Google Scholar
  75. Kohno H, Hoshino T, Yasuda F, Taki Y (1982) Larval melanophore patterns of Thunnus alalunga and T thynnus from the Mediterranean. JPN J Ichthyol 28:461–465Google Scholar
  76. Koutrakis ET, Kallianiotis AA, Tsikliras AC (2004) Temporal patterns of larval fish distribution and abundance in a coastal area of northern Greece. Sci Mar 68:585–595Google Scholar
  77. Lafuente JG, García A, Mazzola S, Quintanilla L, Delgado J, Cuttita A, Patti B (2002) Hydrographic phenomena influencing early life stages of the Sicilian Channel anchovy. Fish Oceanogr 11(1):31–44Google Scholar
  78. Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE (2014) Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl 7(3):355–369PubMedCentralPubMedGoogle Scholar
  79. Lasker R (ed) 1985 An egg production method for estimating spawning biomass of pelagic fish: application to the northern anchovy, Engraulis mordax. US Department of Commerce, NOAA Technical Report, National Marine Fisheries Service, La Jolla, California, vol 36, pp 99Google Scholar
  80. Li C, Waldbieser G, Bosworth B, Beck BH, Thongda W, Peatman E (2014) SNP discovery in wild and domesticated populations of blue catfish, Ictalurus furcatus, using genotyping-by-sequencing and subsequent SNP validation. Mol Ecol Resour 14(6):1261–1270Google Scholar
  81. Lindeque PK, Parry HE, Harmer RA, Somerfield PJ, Atkinson A (2013) Next generation sequencing reveals the hidden diversity of zooplankton assemblages. PLoS ONE 8(11):e81327PubMedCentralPubMedGoogle Scholar
  82. Lindo-Atichati D, Bringas F, Goni G, Muhling B, Muller-Karger FE, Habtes S (2012) Varying mesoscale structures influence larval fish distribution in the northern Gulf of Mexico. Mar Ecol Prog Ser 463:245–257Google Scholar
  83. Lo NC, Dorval E, Funes-Rodríguez R, Hernández-Rivas ME, Huang Y, Fan Z (2010) Utilities of larval densities of Pacific mackerel (Scomber japonicus) off California, USA and west coast of Mexico from 1951 to 2008, as spawning biomass indices. Cienc Pesq 18(2):59–75Google Scholar
  84. Lockwood SJ, Nichols JH, Dawson WA (1981) The estimation of a mackerel (Scomber scombrus L) spawning stock size by plankton survey. J Plankton Res 3(2):217–233Google Scholar
  85. Lowenstein JH, Amato G, Kolokotronis SO (2009) The real maccoyii: identifying tuna sushi with DNA barcodes-contrasting characteristic attributes and genetic distances. PLoS ONE 4(11):e7866PubMedCentralPubMedGoogle Scholar
  86. Lutcavage ME, Brill RW, Skomal GB, Chase BC, Howey PW (1999) Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: do North Atlantic bluefin tuna spawn in the mid-Atlantic? Can J Fish Aquat Sci 56:173–177Google Scholar
  87. MacKenzie BR, Mariani P (2012) Spawning of bluefin tuna in the Black Sea: historical evidence, environmental constraints and population plasticity. PLoS ONE 7(7):e39998PubMedCentralPubMedGoogle Scholar
  88. Mariani P, MacKenzie BR, Iudicone D, Bozec A (2010) Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea. Prog Oceanogr 86:45–58Google Scholar
  89. Matarese AC, Spies IB, Busby MS, Orr JW (2011) Early larvae of Zesticelus profundorum (family Cottidae) identified using DNA barcoding. Ichthyol Res 58(2):170–174Google Scholar
  90. Matsumoto WM, Ahlstrom EH, Jones S (1972) On the clarification of larval tuna identification. Fsh B-NOAA 70:1–12Google Scholar
  91. McGowan MF, Richards WJ (1989) Bluefin tuna, Thunnus thynnus, larvae in the Gulf Stream off the southeastern United States: satellite and shipboard observations of their environment. Fish B NOAA 87:615–631Google Scholar
  92. Miyashita S, Sawada Y, Okada T, Murata O, Kumai H (2001) Morphological development and growth of laboratory-reared larval and juvenile Thunnus thynnus (Pisces: Scombridae). Fish B NOAA 99(4):601–616Google Scholar
  93. Moser HG, Charter RL, Watson W, Ambrose DA, Butler JL, Charter SR, Sandknop EM (2000) Abundance and distribution of rockfish (Sebastes) larvae in the Southern California Bight in relation to environmental conditions and fishery exploitation. Calif Coop Oceanic Fish Invest Rep 41:132–147Google Scholar
  94. Muhling BA, Lamkin JT, Quattro JM, Smith RH, Roberts MA, Roffer MA, Ramírez K (2011) Collection of larval bluefin tuna (Thunnus thynnus) outside documented western Atlantic spawning grounds. Bull Mar Sci 87(3):687–694Google Scholar
  95. Muhling BA, Reglero P, Ciannelli L, Alvarez-Berastegui D, Alemany F, Lamkin JT, Roffer MA (2013) Comparison between environmental characteristics of larval bluefin tuna Thunnus thynnus habitat in the Gulf of Mexico and western Mediterranean Sea. Mar Ecol Prog Ser 486:257–276Google Scholar
  96. Neira FJ, Keane JP (2008) Ichthyoplankton-based spawning dynamics of blue mackerel (Scomber australasicus) in south-eastern Australia: links to the East Australian Current. Fish Oceanogr 17(4):281–298Google Scholar
  97. Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish Fish 9:450–461Google Scholar
  98. Nishida T, Tsuji S, Segawa K (1998) Spatial data analyses of Atlantic bluefin tuna larval surveys in the 1994 ICCAT BYP. ICCAT Col Vol Sci Pap 48:107–110Google Scholar
  99. Oray IK, Karakulak FS (2005) Further evidence of spawning of bluefin tuna (Thunnus thynnus L, 1758) and the tuna species (Auxis rochei Ris, 1810, Euthynnus alletteratus Raf, 1810) in the eastern Mediterranean Sea: preliminary results of TUNALEV larval survey in 2004. J Appl Ichtyol 21(3):236–240Google Scholar
  100. Özsoy E, Hecht A, Ünlüata Ü, et al (1993) A synthesis of the Levantine Basin circulation and hydrography, 1985–1990. Deep Sea Res Part II 40(6):1075–1119Google Scholar
  101. Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of morphology. Mol Ecol Resour 9:42–50PubMedGoogle Scholar
  102. Padoa E (1956) Scombriformes e Carangiformes In: Lo Bianco S (ed) Uova, larve e stadi giovanili di Teleostei. Fauna e Flora del Golfo di Napoli. Monografia 38, pp 471–576Google Scholar
  103. Paine MA, McDowell JR, Graves JE (2007) Specific identification of western Atlantic Ocean scombrids using mitochondrial DNA cytochrome c oxidase subunit I (COI) gene region sequences. Bull Mar Sci 80:353–367Google Scholar
  104. Paine MA, McDowell JR, Graves JE (2008) Specific identification using COI sequence analysis of scombrid larvae collected off the Kona coast of Hawaii Island. Ichthyol Res 55(1):7–16Google Scholar
  105. Pegg GG, Sinclair B, Briskey L, Aspden WJ (2006) MtDNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. Sci Mar 70:7–12Google Scholar
  106. Piccinetti C, Piccinetti Manfrin G (1993) Distribution des larves de thonidés en Mediterranée. ICCAT Col Vol Sci Pap 40:164–172 (in French)Google Scholar
  107. Piccinetti C, Piccinetti Manfrin G, Soro S (1997) Résultats d’une campagne de recherche sur les larves de thonidés en Mediterranée. ICCAT Col Vol Sci Pap 46:207–214 (in French)Google Scholar
  108. Poulsen NA, Hemmer-Hansen J, Loeschcke V, Carvalho GR, Nielsen EE (2011) Microgeographical population structure and adaptation in Atlantic cod Gadus morhua: spatio-temporal insights from gene-associated DNA markers. Mar Ecol Prog Ser 436:231–243Google Scholar
  109. Puncher GN, Arrizabalaga H, Alemany F, et al (2015) Molecular identification of Atlantic bluefin tuna (Thunnus thynnus, Scombridae) larvae and development of a genetic character-based identification key for Mediterranean scombrids. PLoS ONE (in press)Google Scholar
  110. Ratnasingham S, Hebert PDN (2007) BOLD: The barcode of life data system ( Mol Ecol Notes 7:355–364
  111. Reglero P, Urtizberea A, Torres AP, Alemany F, Fiksen Ø (2011) Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar Ecol Prog Ser 433:205–219Google Scholar
  112. Reglero P, Ciannelli L, Alvarez-Berastegui D, Balbín R, López-Jurado JL, Alemany F (2012) Geographically and environmentally driven spawning distributions of tuna species in the western Mediterranean Sea. Mar Ecol Prog Ser 463:273–284Google Scholar
  113. Riccioni G, Landi M, Ferrara G et al (2010) Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic bluefin tuna of the Mediterranean Sea. PNAS 107:2102–2107PubMedCentralPubMedGoogle Scholar
  114. Riccioni G, Stagioni M, Landi M, Ferrara G, Barbujani G, Tinti F (2013) Genetic structure of bluefin tuna in the Mediterranean Sea correlates with environmental variables. PLoS ONE 8(11):e80105PubMedCentralPubMedGoogle Scholar
  115. Richards WJ (1976) Spawning of bluefin tuna (Thunnus thynnus) in the Atlantic Ocean and adjacent seas. ICCAT Col Vol Sci Pap 5:267–278Google Scholar
  116. Richards WJ (ed) (2004) Early stages of Atlantic fishes: an identification guide for the western central north Atlantic, vol 1. CRC Press, Boca Roton, pp 2212–2213Google Scholar
  117. Richards WJ, Pothoff T (1974) Analysis of the taxonomic characters of young scombrid fishes, genus Thunnus. In: Blaxter JHS (ed) The early life history of fish. Springer, Berlin, pp 623–648Google Scholar
  118. Richards WJ, Potthoff T, Kim JM (1990) Problems identifying tuna larvae species (Pisces: Scombridae: Thunnus) from the Gulf of Mexico. Fish B NOAA 88:607–609Google Scholar
  119. Richardson DE, Vanwye JD, Exum AM, Cowen RK, Crawford DL (2006) High-throughput species identification: from DNA isolation to bioinformatics. Mol Ecol Notes 7(2):199–207Google Scholar
  120. Richardson DE, Llopiz JK, Guigand CM, Cowen RK (2010) Larval assemblages of large and medium-sized pelagic species in the Straits of Florida. Prog Oceanogr 86(1):8–20Google Scholar
  121. Robinson AR, Malanotte-Rizzoli P, Hecht A et al (1992) General circulation of the Eastern Mediterranean. Earth Sci Rev 32(4):285–309Google Scholar
  122. Sanzo L (1932) Uova e primi stadi larval de tonno (Orcynus thynnus Ltkn) Consiglio nazionale dell ricerche. Reale comitato talassografico italiano 189 (in Italian)Google Scholar
  123. Sanzo L (1933) Uova e primi stadi larvali di alalonga (Orcynus germo LTKU). R. Com. Talas. Ital. Memoria 198:11 (in Italian)Google Scholar
  124. Scaccini A (1975) Uova e larve di tonno pescate nella Sicilia occidentale e loro allevamento. Ministero della marina mercantile, Direzione generale della pesca marittima Roma, Italy, Memoria 39:1–120 (In Italian)Google Scholar
  125. Scaccini A, Sara R, Piccinetti C, Manfrin G (1973) Donées préliminaires sur une campagne d’étude des œufs et larves de Thonidés. Rapp Comm Int Mer Médit 21(10):801–803 (in French)Google Scholar
  126. Scott GP, Turner SC (2003) Updated index of bluefin tuna (Thunnus thynnus) spawning biomass from Gulf of Mexico ichthyoplankton surveys. ICCAT Col Vol Sci Pap 55:1123–1126Google Scholar
  127. Scott GP, Turner SC, Churchill GB, Richards WJ, Brothers EB (1993) Indices of larval bluefin tuna, Thunnus thynnus, abundance in the Gulf of Mexico; modelling variability in growth, mortality, and gear selectivity. Bull Mar Sci 53:912–929Google Scholar
  128. Seberg O, Humphries CJ, Knapp S et al (2003) Shortcuts in systematics? A commentary on DNA-based taxonomy. Trends Ecol Evol 18:63–65Google Scholar
  129. Seeb LW, Templin WD, Sato S, Abe S, Warheit K, Park JY, Seeb JE (2011) Single nucleotide polymorphisms across a species’ range: implications for conservation studies of Pacific salmon. Mol Ecol Resour 11:195–217PubMedGoogle Scholar
  130. Shokralla S, Gibson JF, Nikbakht H, Janzen DH, Hallwachs W, Hajibabaei M (2014) Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol Ecol Resour 14:892–901PubMedCentralPubMedGoogle Scholar
  131. Stein ED, Martinez MC, Stiles S, Miller PE, Zakharov EV (2014) Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States? PLoS ONE 9(4):e95525PubMedCentralPubMedGoogle Scholar
  132. Stevens MI, Porco D, D’Haese CA, Deharveng L (2011) Comment on “taxonomy and the DNA barcoding enterprise” by Ebach (2011). Zootaxa 2838:85–88Google Scholar
  133. Stratoudakis Y, Bernal M, Ganias K, Uriarte A (2006) The daily egg production method: recent advances, current applications and future challenges. Fish Fish 7(1):35–57Google Scholar
  134. Swartz ER, Mwale M, Hanner R (2008) A role for barcoding in the study of African fish diversity and conservation. S Afr J Sci 104(7–8):293–298Google Scholar
  135. Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2002) DNA points the way ahead in taxonomy. Nature 418:479PubMedGoogle Scholar
  136. Tsuji S, Nishikawa Y, Segawa K, Hiroe Y (1997) Distribution and abundance of Thunnus larvae and their relation to the oceanographic condition in the Gulf of Mexico and the Mediterranean Sea during May through August of 1994. ICCAT Col Vol Sci Pap 46:161–176Google Scholar
  137. Ueyanagi S (1966) On the red pigmentation of larval tuna and its usefulness in species identification. Rep Nankai Reg Fish Res Lab 24:41–48 (in Japanese)Google Scholar
  138. Ueyanagi S (1969) Observations on the distribution of tuna larvae in the Indo-Pacific Ocean with emphasis on the delineation of the spawning areas of albacore, Thunnus alalunga. Bull Far Seas Fish Res Lab 2:177–256Google Scholar
  139. Ueyanagi S, Watanabe H (1964) Methods of identification of larvae of tunas and billfishes (II) materials for tuna fisheries research council. Nankai Reg Fish Res Lab, Kohchi, pp 1–16Google Scholar
  140. Valdez-Moreno M, Vásquez-Yeomans L, Elías-Gutiérrez M, Ivanova NV, Hebert PDN (2010) Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: potential in fisheries management. Mar Fresh Res 61:655–671Google Scholar
  141. Vandersea MW, Litaker RW, Marancik KE et al (2008) Identification of larval sea basses (Centropristis spp.) using ribosomal DNA-specific molecular assays. Fish B NOAA 106:183–193Google Scholar
  142. Vecchione M, Mickevich MF, Fauchald K et al (2000) Importance of assessing taxonomic adequacy in determining fishing effects on marine biodiversity. ICES J Mar Sci: J Cons 57:677–681Google Scholar
  143. Victor BC, Hanner R, Shivji M, Hyde J, Caldow C (2009) Identification of the larval and juvenile stages of the Cubera Snapper, Lutjanus cyanopterus, using DNA barcoding. Zootaxa 2215:24–36Google Scholar
  144. Viñas J, Tudela S (2009) A validated methodology for genetic identification of tuna species (genus Thunnus). PLoS ONE 4(10):e7606PubMedCentralPubMedGoogle Scholar
  145. Viñas J, Gordoa A, Fernández-Cebrián R, Pla C, Vahdet Ü, Araguas RM (2011) Facts and uncertainties about the genetic population structure of Atlantic bluefin tuna (Thunnus thynnus) in the Mediterranean Implications for fishery management. Rev Fish Biol Fish 21:527–541Google Scholar
  146. Vodianitskii VA, Kazanova II (1954) Diagnostic description of the eggs and larvae of the Black Sea fishes. Trudy VNIRO 28:240–327 (in Russian)Google Scholar
  147. Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356PubMedGoogle Scholar
  148. White WT, Last PR (2012) A review of the taxonomy of chondrichthyan fishes: a modern perspective. J Fish Biol 80(5):901–917PubMedGoogle Scholar
  149. Willette DA, Allendorf FW, Barber PH et al (2014) So, you want to use next-generation sequencing in marine systems? Insight from the Pan-Pacific Advanced Studies Institute. Bull Mar Sci 90(1):79–122Google Scholar
  150. Wilson EO (2003) The encyclopedia of life. Trends Ecol Evol 18:77–80Google Scholar
  151. Worm B, Tittensor DP (2011) Range contraction in large pelagic predators. Proc Natl Acad Soc 108:11942–11947Google Scholar
  152. Yabe H, Ueyanagi S, Watanabe H (1966) Studies on the early life history of bluefin tuna Thunnus thynnus and on the larvae of the southern bluefin tuna T maccoyii. Rep Nankai Reg Fish Res Lab 23:95–129 (in Japanese)Google Scholar
  153. Yoder M, De Ley IT, Wm King I et al (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8(3):367–376Google Scholar
  154. Zarrad R, Alemany F, Rodríguez JM, Jarboui O, Lopez-Jurado JL, Balbin R (2013) Influence of summer conditions on the larval fish assemblage in the eastern coast of Tunisia (Ionian Sea, Southern Mediterranean). J Sea Res 76:114–125Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gregory Neils Puncher
    • 1
    • 2
  • Francisco Alemany
    • 3
  • Haritz Arrizabalaga
    • 4
  • Alessia Cariani
    • 1
  • Fausto Tinti
    • 1
  1. 1.Department of Biological, Geological and Environmental Sciences/Laboratory of Genetics and Genomics of Marine Resources and Environment (GenoDREAM)University of BolognaRavennaItaly
  2. 2.Department of Marine BiologyGhent UniversityGhentBelgium
  3. 3.Instituto Español de OceanografíaCentro Oceanográfico de BalearesPalmaSpain
  4. 4.AZTI TecnaliaMarine Research DivisionHerrera Kaia, PasaiaSpain

Personalised recommendations