Reviews in Fish Biology and Fisheries

, Volume 25, Issue 3, pp 449–462 | Cite as

Modelling growth in fish with complex life histories

  • R. M. Higgins
  • H. Diogo
  • E. J. Isidro


Understanding growth in living organisms is central to the study of individuals, populations and communities. In fisheries, in particular, growth modelling is fundamental to the management of fish stocks that can constitute important economic resources. The scientific literature is abundant in studies attempting to define the growth trajectory of different fish species but often little consideration is given to the ecological components of the fish’s life history. This review examines ontogeny of fishes with complex life histories, in particular how different phases can effect growth and the interpretation of growth models. Using the blackspot seabream (Pagellus bogaraveo) as an example, we explore alternative approaches to understanding growth in a species that undergoes both sex reallocation and ontogenetic vertical migration. More flexible models are required in order to accurately represent significant lifetime events, specifically accounting for periodical changes in the growth trajectory. Finally, model evaluation and interpretation need to be adequate to the task, particularly when outcomes are used to support resource management, in order to address concerns regarding conservation, sustainability, and successful management in the long term.


Growth Ontogenetic migration Habitat shift Hermaphrodite Modelling 



This study was financially supported by the Directorate for Science, Technology and Communication of the Azores Regional Government via the project PAGFish: Population, age and growth studies for commercial fish species in the Azores. (M3.1.7/F/003/2008/0000016) and a scholarship granted to RMH (M3.1.7/F/003/2008/0000016), in collaboration with the European Social Fund program PRO-EMPREGO. We would also like to thank Gui Menezes and Alexandra Rosa for providing access to the otolith archive as well as the crew of the research vessel ‘Arquipélago’ and the team members of the demersal sampling cruises for collecting samples. We are also grateful for the contributions and comments made by anonymous reviewers.

Supplementary material

11160_2015_9388_MOESM1_ESM.pdf (472 kb)
Supplementary material 1 (PDF 471 kb)
11160_2015_9388_MOESM2_ESM.pdf (246 kb)
Supplementary material 2 (PDF 245 kb)
11160_2015_9388_MOESM3_ESM.pdf (280 kb)
Supplementary material 3 (PDF 279 kb)
11160_2015_9388_MOESM4_ESM.pdf (259 kb)
Supplementary material 4 (PDF 258 kb)


  1. Abecasis D, Bentes L, Coelho R, Correia C, Lino PG, Monteiro P, Goncalves JMS, Ribeiro J, Erzini K (2008) Ageing seabreams: a comparative study between scales and otoliths. Fish Res 89(1):37–48CrossRefGoogle Scholar
  2. Afonso P, Fontes J, Guedes R, Tempera F, Holland KN, Santos RS (2009) A multiscale study of red porgy movements and habitat use, and its application to the design of marine reserve networks. In: Sibert J, Lutcavage M, Hobday A, Fragoso N, Arrizabalaga H, Nielsen J (eds) Tagging and tracking of marine animals with electronic devices. Springer, Netherlands, pp 423–443CrossRefGoogle Scholar
  3. Afonso P, Graça G, Berke G, Fontes J (2012) First observations on seamount habitat use of blackspot seabream (Pagellus bogaraveo) using acoustic telemetry. J Exp Mar Biol Ecol 436:1–10CrossRefGoogle Scholar
  4. Afonso P, McGinty N, Graça G, Fontes J, Inácio M, Totland A, Menezes G (2014) Vertical migrations of a deep-sea fish and its prey. PLoS One 9(5):e97884. doi: 10.1371/journal.pone.0097884 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Alonzo SH, Mangel M (2004) The effects of size-selective fisheries on the stock dynamics of and sperm limitation in sex-changing fish. Fish Bull 102:1–13Google Scholar
  6. Alonzo SH, Ish T, Key M, MacCall AD, Mangel M (2008) The importance of incorporating protogynous sex change into stock assessments. Bull Mar Sci 83:163–179Google Scholar
  7. Alós J, Palmer M, Alonso-Fernandez A, Morales-Nin B (2010) Individual variability and sex-related differences in the growth of Diplodus annularis (Linnaeus, 1758). Fish Res 101(1–2):60–69CrossRefGoogle Scholar
  8. Avise JC, Mank JE (2009) Evolutionary perspectives on hermaphroditism in fishes. Sex Dev 3:152–163PubMedCrossRefGoogle Scholar
  9. Baker R, Sheaves M (2007) Shallow-water refuge paradigm: conflicting evidence from tethering experiments in a tropical estuary. Mar Ecol-Prog Ser 349:13–22CrossRefGoogle Scholar
  10. Barreto RR, Lessa RP, Hazin FH, Santana FM (2011) Age and growth of the blacknose shark, Carcharhinus acronotus (Poey, 1860) off the northeastern Brazilian Coast. Fish Res 110(1):170–176. doi: 10.1016/j.fishres.2011.04.003 CrossRefGoogle Scholar
  11. Baty F, Ritz C, Charles S, Brutsche M, Flandrois JP, Delignette-Muller ML (2014) A toolbox for nonlinear regression in R: the package nlstools. Under revision at J Stat SoftwGoogle Scholar
  12. Baumann H, Pepin P, Davidson FJM, Mowbray F, Schnack D, Dower JF (2003) Reconstruction of environmental histories to investigate patterns of larval radiated shanny (Ulvaria subbifurcata) growth and selective survival in a large bay of Newfoundland. ICES J Mar Sci 60(2):243–258CrossRefGoogle Scholar
  13. Beckman BR, Larsen DA, Lee-Pawlak B, Dickhoff WW (1998) Relation of fish size and growth rate to migration of spring Chinook salmon smolts. N Am J Fish Manage 18(3):537–546. doi: 10.1577/1548-8675(1998)018<0537:ROFSAG>2.0.CO;2 CrossRefGoogle Scholar
  14. Binder TR, Cooke SJ, Hinch SG (2011) The biology of fish migration. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment, vol 3. Academic Press, San Diego, pp 1921–1927CrossRefGoogle Scholar
  15. Boeuf G, Le Bail PY (1999) Does light have an influence on fish growth? Aquaculture 177(1–4):129–152CrossRefGoogle Scholar
  16. Boeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Phys C 130(4):411–423Google Scholar
  17. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York 488 pp Google Scholar
  18. Buxton CD, Garratt PA (1990) Alternative reproductive styles in seabreams (Pisces: Sparidae). Environ Biol Fish 28(1–4):113–124CrossRefGoogle Scholar
  19. Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton 355 pp Google Scholar
  20. Charnov EL (2008) Fish growth: Bertalanffy k is proportional to reproductive effort. Envir Biol Fish 83:185–187CrossRefGoogle Scholar
  21. Chilari A, Petrakis G, Tsamis E (2006) Aspects of the biology of blackspot seabream (Pagellus bogaraveo) in the Ionian Sea, Greece. Fish Res 77(1):84–91. doi: 10.1016/j.fishres.2005.08.003 CrossRefGoogle Scholar
  22. Copatti CE, de Oliveira GarciaL, Kochhann D, Alves Cunha M, Baldisserotto B (2011) Dietary salt and water pH effects on growth and Na+ fluxes of silver catfish juveniles. Acta Sci Anim Sci 33(3):261–266Google Scholar
  23. Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81(8):2227–2240CrossRefGoogle Scholar
  24. Diogo H, Pereira JG (2014) assessing the potential biological implications of recreational inshore fisheries on sub-tidal fish communities of Azores (north-east Atlantic Ocean) using catch and effort data. J Fish Biol 84(4):952–970PubMedCrossRefGoogle Scholar
  25. Diogo H, Pereira JG, Higgins RM, Canha A, Reis D (2015) History, effort distribution and landings in an artisanal bottom longline fishery: an empirical study from the North Atlantic Ocean. Mar Pol 51:75–85CrossRefGoogle Scholar
  26. Dumas A, France J, Bureau D (2010) Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquac Res 41(2):161–181CrossRefGoogle Scholar
  27. Egli DP, Babcock RC (2004) Ultrasonic tracking reveals multiple behavioural modes of snapper (Pagrus auratus) in a temperate no-take marine reserve. ICES J Mar Sci 61:1137–1143. doi: 10.1016/j.icesjms.2004.07.004
  28. Emre Y, Balik I, Sümer C, Oskay DA, Yesilçimen HO (2010) Age, growth, length-weight relationship and reproduction of the striped seabream (Lithognathus mormyrus L., 1758) (Sparidae) in the Beymelek Lagoon (Antalya, Turkey). Turk J Zool 31:93–100Google Scholar
  29. Erisman BE, Petersen CW, Hastings PA, Warner RR (2013) Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr Comp Biol 53(4):736–754PubMedCrossRefGoogle Scholar
  30. Figueiredo C, Diogo H, Pereira JG, Higgins RM (2015) Using information-based methods to model age and growth of the silver scabbardfish, Lepidopus caudatus, from the mid-Atlantic Ocean. Mar Biol Res 11:86–96. doi: 10.1080/17451000.2014.889307 CrossRefGoogle Scholar
  31. Fiorentino F, Gancitano V, Gancitano S, Rizzo P, Ragonese S (2013) An updated two-phase growth model for demersal fish with an application to red mullet (Mullus barbatus L., 1758) (Perciformes Mullidae) of the Mediterranean. Naturalista Sicil S. IV XXXVII(2):529–542Google Scholar
  32. Froese R, Pauly D (eds) (2011) FishBase. World Wide Web electronic publication. (06/2014)
  33. Furey NB, Rooker JR (2013) Spatial and temporal shifts in suitable habitat of juvenile southern flounder (Paralichthys lethostigma). J Sea Res 76:161–169CrossRefGoogle Scholar
  34. Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44(2):189–208PubMedCrossRefGoogle Scholar
  35. Ghiselin MT (2006) Sexual selection in hermaphrodites: where did our ideas come from? Integr Comp Biol 46:368–372PubMedCrossRefGoogle Scholar
  36. Gompertz B (1825) On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:515–585CrossRefGoogle Scholar
  37. Gordoa A, Molí B (1997) Age and growth of the sparids Diplodus vulgaris, D. sargus and D. annularis in adult populations and the differences in their juvenile growth patterns in the north-western Mediterranean Sea. Fish Res 33:123–129CrossRefGoogle Scholar
  38. Grol MGG, Dorenbosch M, Kokkelmans EMG, Nagelkerken I (2008) Mangroves and seagrass beds do not enhance growth of early juveniles of a coral reef fish. Mar Ecol-Prog Ser 366:137–146CrossRefGoogle Scholar
  39. Grol MGG, Rypel AL, Nagelkerken I (2014) Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar Ecol-Prog Ser 502:229–244CrossRefGoogle Scholar
  40. Hamilton SL, Caselle JE, Standish JD, Schroeder DM, Love MS, Rosales-Casian JA, Sosa-Nishizaki O (2007) Size-selective harvesting alters life histories of a temperate sex changing fish. Ecol Appl 17:2268–2280PubMedCrossRefGoogle Scholar
  41. Heino M, Kaitala V (1999) Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J Evol Biol 12:423–429CrossRefGoogle Scholar
  42. Heppell SA, Sullivan CV (1999) Gag (Mycteroperca microlepis) vitellogenin: purification, characterization and use for enzyme-linked immunosorbent assay (ELISA) of female maturity in three species of grouper. Fish Physiol Biochem 20(4):361–374CrossRefGoogle Scholar
  43. Hilborn R, Walters CJ, Ludwig D (1995) Sustainable exploitation of renewable resources. Ann Rev Ecol Syst 26:45–67. doi: 10.1146/annurev.ecolsys.26.1.45
  44. Hoffman SG, Schildauer MP, Warner RR (1985) The costs of changing sex and the ontogeny of males under contest competition for mates. Evolution 39:915–927CrossRefGoogle Scholar
  45. Imsland AK, Foss A, Folkvord A, Stefansson SO, Jonassen TM (2005) The interrelation between temperature regimes and fish size in juvenile Atlantic cod (Gadus morhua): effects on growth and feed conversion efficiency. Fish Physiol Biochem 31(4):347–361PubMedCentralCrossRefGoogle Scholar
  46. Jolicoeur P (1985) A flexible 3-parameter curve for limited or unlimited somatic growth. Growth 49:271–281PubMedGoogle Scholar
  47. Kahilainen K, Lehtonen H, Kononen K (2003) Consequence of habitat segregation to growth rate of two sparsely rakered whitefish (Coregonus lavaretus (L.)) forms in a subarctic lake. Ecol Freshw Fish 12(4):275–285CrossRefGoogle Scholar
  48. Kozłowski J, Teriokhin AT (1999) Allocation of energy between growth and reproduction: the Pontryagin Maximum Principle solution for the case of age- and season-dependent mortality. Evol Ecol Res 1:423–441Google Scholar
  49. Krug HM (1989) The Azorean blackspot seabream, Pagellus bogaraveo (Brünnich, 1768) (Teleostei: Sparidae): Age and growth. Cybium 13(4):347–355Google Scholar
  50. Krug HM (1990) The Azorean Blackspot seabream, Pagellus bogaraveo (Brünnich, 1768) (Teleostei, Sparidae): Reproductive cycle, hermaphrodism, maturity and fecundity. Cybium 14(2):151–159Google Scholar
  51. Lin HY, Shiao JC, Chen YG, Iizuka Y (2012) Ontogenetic vertical migration of grenadiers revealed by otolith microstructures and stable isotopic composition. Deep-Sea Res Pt I 61:123–130CrossRefGoogle Scholar
  52. Lorance P (2011) History and dynamics of the overexploitation of the blackspot sea bream (Pagellus bogaraveo) in the Bay of Biscay. ICES J Mar Sci 68(2):290–301CrossRefGoogle Scholar
  53. Lorenzo JM, Pajuelo JG, Méndez-Villamil M, Coca J, Ramos AG (2002) Age, growth, reproduction and mortality of the striped seabream, Lithognathus mormyrus (Pisces, Sparidae), off the Canary Islands (Central-east Atlantic). J Appl Ichthyol 18(3):204–209CrossRefGoogle Scholar
  54. Lotaçor (2014) Fish landed on autonomous region of the Azores. Lotaçor S.A. Accessed 19 Sept 2014
  55. Macpherson E (1998) Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J Exp Mar Biol Ecol 220:127–150CrossRefGoogle Scholar
  56. Marshall CT, Needle CL, Thorsen A, Kjesbu OS, Yaragina NA (2006) Systematic bias in estimates of reproductive potential of an Atlantic cod (Gadus morhua) stock: implications for stock-recruit theory and management. Can J Fish Aquat Sci 63:980–994CrossRefGoogle Scholar
  57. Meekan MG, Fortier L (1996) Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar Ecol-Prog Ser 137(1–3):25–37CrossRefGoogle Scholar
  58. Menezes GM, Sigler MF, Silva HM, Pinho MR (2006) Structure and zonation of demersal and deep-water fish assemblages off the Azores Archipelago (mid-Atlantic). Mar Ecol-Prog Ser 324:241–260CrossRefGoogle Scholar
  59. Mercier L, Panfili J, Paillon C, Ndiaye A, Mouillot D, Darnaude AM (2011) Otolith reading and multi-model inference for improved estimation of age and growth in the gilthead sea bream Sparus aurata (L.). Estuar Coast Shelf Sci 92(4):534–545. doi: 10.1016/j.ecss.2011.02.001 CrossRefGoogle Scholar
  60. Micale V, Maricchiolo G, Genovese L (2002) The reproductive biology of blackspot seabream Pagellus bogaraveo in captivity. I. Gonadal development, maturation and hermaphroditism. J Appl Ichthyol 18:172–176CrossRefGoogle Scholar
  61. Molloy PP, Goodwin NP, Côté IM, Gage MJG, Reynolds JD (2007) Predicting the effects of exploitation on male-first sex-changing fish. Anim Conserv 10(1):30–38. doi: 10.1111/j.1469-1795.2006.00065.x CrossRefGoogle Scholar
  62. Morato T, Sola E, Gros MP, Menezes G (2001) Feeding habits of two congener species of seabreams, Pagellus bogaraveo and Pagellus acarne, off the Azores (north-eastern Atlantic) during spring of 1996 and 1997. Bull Mar Sci 69:1073–1087Google Scholar
  63. Mouine N, Francour P, Ktari MH, Chakaroun-Marzouk N (2007) The reproductive biology of Diplodus sargus sargus in the Gulf of Tunis (central Mediterranean). Sci Mar 71(3):461–469CrossRefGoogle Scholar
  64. Munday P, Molony BW (2002) The energetic cost of protogynous versus protandrous sex change in the bi-directional sex changing fish Gobiodon histrio. Mar Biol 141:429–446Google Scholar
  65. Mytilineou C, Politou CY, Papaconstantinou C, Kavadas S, D’Onghia G, Sion L (2005) Deep-water fish fauna in the Eastern Ionian Sea. Belg J Zool 135:229–233Google Scholar
  66. Mytilineou C, Tsagarakis K, Bekas P, Anastasopoulou A, Kavadas S, Machias A, Haralabous J, Smith CJ, Petrakis G, Dokos J, Kapandagakis A (2013) Spatial distribution and life-history aspects of blackspot seabream Pagellus bogaraveo (Osteichthyes: Sparidae). J Fish Biol 83:1551–1575PubMedCrossRefGoogle Scholar
  67. NOAA (2012) Chesapeake Bay Blue Crab Advisory Report. CBSAC Meeting, June 19th, 2012, pp. 10. Accessed 29 Aug 2014
  68. Osorio D, Terborgh J, Alvarez A, Ortega H, Quispe R, Chipollini V, Davenport LC (2011) Lateral migration of fish between an oxbow lake and an Amazonian headwater river. Ecol Freshw Fish 20(4):619–627CrossRefGoogle Scholar
  69. Palma C, Lillebo AI, Borges C, Souto M, Pereira E, Duarte AC, De Abreu MP (2012) Water column characterisation on the Azores platform and at the sea mounts south of the archipelago. Mar Pollut Bull 64(9):1884–1894PubMedCrossRefGoogle Scholar
  70. Pandian TJ (2012) Genetic sex differentiation in fish. CRC Press, USA. 220 CrossRefGoogle Scholar
  71. Parma AM, Deriso RB (1990) Dynamics of age and size composition in a population subject to size-selective mortality—effects of phenotypic variability in growth. Can J Fish Aquat Sci 47(2):274–289CrossRefGoogle Scholar
  72. Peer AC, Selckmann GM, Miller TJ (2012) A standardized method and analytical approach for predicting female reproductive stage in teleosts by using ovary color and female characteristics. Trans Am Fish Soc 141:1036–1044CrossRefGoogle Scholar
  73. Pinho MR, Diogo H, Carvalho J, Pereira JG (2014) Harvesting juveniles of blackspot sea bream (Pagellus bogaraveo) in the Azores (Northeast Atlantic): biological implications, management, and life cycle considerations. ICES J Mar Sci (in press). doi: 10.1093/icesjms/fsu089
  74. Pittman SJ, McAlpine CA (2003) Movements of marine fish and decapod crustaceans: process, theory and application. Adv Mar Biol 44:205–294PubMedCrossRefGoogle Scholar
  75. Priol E (1932) Remarques sur les stades jeunes de la dorade (Pagellus centrodontus) capturées à la ligne à la côte. Laboratoire De L’Office Des Pêches De Boulogne-Sur-Mer, Boulogne-Sur-Mer, p 10Google Scholar
  76. Provost MM, Jensen OP (2012) Management and assessment of sex changing fishes. PMAFS protogynous hermaphrodite modeling workshop. August 29–30, 2012. Institute of Marine and Coastal Sciences, Rutgers UniversityGoogle Scholar
  77. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  78. Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Bull Fish Res Board Can 191:1–382Google Scholar
  79. Ricker WE (1979) Growth rates and models. In: Fish physiology, vol 8. Academic Press, New YorkGoogle Scholar
  80. Robertson DR, Choat JH (1974) Protogynous hermaphroditism and social systems in labrid fish. In: Proceedings of the second international coral reef symposium I. Great Barrier Reef Committee, BrisbaneGoogle Scholar
  81. Rogers L (2003) Odds-playing and the timing of sex change in uncertain environments: you bet your wrasse. Behav Ecol 14(3):447–450CrossRefGoogle Scholar
  82. Ross RM (1990) The evolution of sex-change mechanisms in fishes. Environ Biol Fish 29(2):81–93CrossRefGoogle Scholar
  83. Sadovy de Mitcheson Y, Liu M (2008) Functional hermaphroditism in teleosts. Fish Fish 9:1–43CrossRefGoogle Scholar
  84. Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2015) Mothers matter: contribution to local replenishment is linked to female size, mate replacement and fecundity in a fish metapopulation. Mar Biol 162(1):3–14CrossRefGoogle Scholar
  85. Sala-Bozano M, Mariani S (2011) Life history variation in a marine teleost across a heterogeneous seascape. Estuar Coast Shelf Sci 92(4):555–563. doi: 10.1016/j.ecss.2011.02.013 CrossRefGoogle Scholar
  86. Santos RS, Hawkins S, Monteiro LR, Alves M, Isidro EJ (1995) Marine research, resources and conservation in the Azores. Aquat Conserv 5(4):311–354CrossRefGoogle Scholar
  87. Seibel BA, Drazen JC (2007) The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos Trans R Soc B 362(1487):2061–2078CrossRefGoogle Scholar
  88. Shapiro DY (1979) Social behavior, group structure, and the control of sex reversal inhermaphroditic fish. Adv Study Behav 10:43–102CrossRefGoogle Scholar
  89. Soriano MJ, Moreau J, Hoenig JM, Pauly D (1992) New functions for the analysis of two-phase growth of juvenile and adult fishes, with application to Nile perch. Trans Am Fish Soc 121:486–493CrossRefGoogle Scholar
  90. Spedicato MT, Greco S, Sophronidis K, Lembo G, Giordano D, Argyri A (2002) Geographical distribution, abundance and some population characteristics of the species of the genus Pagellus Osteichthyes: Perciformes in different areas of the Mediterranean. Sci Mar 66:65–82CrossRefGoogle Scholar
  91. Stockley B, Menezes G, Pinho, Rogers AD (2005) Genetic population structure in the black-spot sea bream (Pagellus bogaraveo Brunnich, 1768) from the NE Atlantic. Mar Biol Mar 146(4):793–804CrossRefGoogle Scholar
  92. Tanaka M (1982) A new growth curve which expresses infinite increase. Publ Amakusa Mar Biol Lab 6:167–177Google Scholar
  93. Teixeira JPN (2013) Recruitment dynamics and early life history of the blackspot seabream, Pagellus bogaraveo (Perciformes: Sparidae). MSc Thesis, University of the Azores, p 57. Accessed 17 Sept 2014
  94. Vigliola L, Harmelin-Vivien M (2001) Post-settlement ontogeny in three Mediterranean reef fish species of the genus Diplodus. Bull Mar Sci 68:271–286Google Scholar
  95. Villamil MM, Lorenzo JM, Pajuelo JG, Ramos A, Coca J (2002) Aspects of the life history of the salema, Sarpa salpa (Pisces, Sparidae), off the Canarian archipelago (Central-East Atlantic). Environ Biol Fish 63(2):183–192CrossRefGoogle Scholar
  96. von Bertalanffy L (1938) A quantitative theory of organic growth. Inquiries on growth laws II. Hum Biol 10:181–213Google Scholar
  97. Warner RR (1984) Mating behavior and hermaphroditism in coral-reef fishes. Am Sci 72:128–136Google Scholar
  98. Welch DW, Ishida Y, Nagasawa K (1998) Thermal limits and ocean migrations of sockeye salmon (Oncorhynchus nerka): long-term consequences of global warming. Can J Fish Aquat Sci 55:937–948CrossRefGoogle Scholar
  99. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15(1):393–425CrossRefGoogle Scholar
  100. Young JL, Bornik ZB, Marcotte ML, Charlie KN, Wagner GN, Hinch SG, Cooke SJ (2006) Integrating physiology and life history to improve fisheries management and conservation. Fish Fish 7(4):262–283CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IMAR and LARSyS Associated Laboratory, Department of Oceanography and FisheriesUniversity of the AzoresHortaPortugal

Personalised recommendations