Advertisement

Reviews in Fish Biology and Fisheries

, Volume 25, Issue 1, pp 261–272 | Cite as

Setting the stage for a global-scale trophic analysis of marine top predators: a multi-workshop review

  • J. W. YoungEmail author
  • R. J. Olson
  • F. Ménard
  • P. M. Kuhnert
  • L. M. Duffy
  • V. Allain
  • J. M. Logan
  • A. Lorrain
  • C. J. Somes
  • B. Graham
  • N. Goñi
  • H. Pethybridge
  • M. Simier
  • M. Potier
  • E. Romanov
  • D. Pagendam
  • C. Hannides
  • C. A. Choy
Report

Abstract

Global-scale studies of marine food webs are rare, despite their necessity for examining and understanding ecosystem level effects of climate variability. Here we review the progress of an international collaboration that compiled regional diet datasets of multiple top predator fishes from the Indian, Pacific and Atlantic Oceans and developed new statistical methods that can be used to obtain a comprehensive ocean-scale understanding of food webs and climate impacts on marine top predators. We loosely define top predators not as species at the apex of the food web, but rather a guild of large predators near the top of the food web. Specifically, we present a framework for world-wide compilation and analysis of global stomach-contents and stable-isotope data of tunas and other large pelagic predatory fishes. To illustrate the utility of the statistical methods, we show an example using yellowfin tuna in a “test” area in the Pacific Ocean. Stomach-contents data were analyzed using a modified (bagged) classification tree approach, which is being prepared as an R statistical software package. Bulk δ15N values of yellowfin tuna muscle tissue were examined using a Generalized Additive Model, after adjusting for spatial differences in the δ15N values of the baseline primary producers predicted by a global coupled ocean circulation-biogeochemical-isotope model. Both techniques in tandem demonstrated the capacity of this approach to elucidate spatial patterns of variations in both forage species and predator trophic positions and have the potential to predict responses to climate change. We believe this methodology could be extended to all marine top predators. Our results emphasize the necessity for quantitative investigations of global-scale datasets when evaluating changes to the food webs underpinning top ocean predators under long-term climatic variability.

Keywords

Tuna trophic ecology Top predators Global diet data Global stable isotope data Global nitrogen model Predictive analyses Climate change 

Notes

Acknowledgments

The CLIOTOP working group 3 would like to thank all its funding sources, institutions, and data providers. Petra Kuhnert was supported by a Julius Fellowship from CSIRO, which also provided financial support for the final workshop. The Inter-American Tropical Tuna Commission also provided support for the final workshop. Valerie Allain was supported by the Pacific Islands Oceanic Fisheries Management Project supported by Global Environment Facility, the Australian Government Overseas Aid Program (AusAid), and a Cooperative Agreement NA17RJ1230 between the Joint Institute for Marine and Atmospheric Research (JIMAR) and the National Oceanic and Atmospheric Administration (NOAA). Christopher Somes was supported by the SFB 754 project from the German Research Foundation (DFG). Anne Lorrain was supported by IRD and the Pacific Fund. Brittany Graham was supported by NIWA. Heidi Pethybridge was supported by an Office of the Chief Executive CSIRO Postdoctoral Fellowship. We thank the observer programs and the many observers who collected the samples in each of the ocean basins. We would like to acknowledge the contribution of YugNIRO scientists in the long-term sampling of stomachs in the Indian Ocean during research program funded by the Ministry of Fisheries of the former USSR. We thank Christine Patnode, IATTC, for assistance with the graphics.

References

  1. Allain V, Nicol S, Essington TE, Okey T, Olson R, Kirby D (2007) An Ecopath with Ecosim model of the Western and Central Pacific Ocean warm pool pelagic ecosystem. Paper presented at the Western and Central Pacific Fisheries Commission Scientific Committee Third Regular Session, Honolulu, Hawaii, USA, 13–24 August 2007Google Scholar
  2. Allain V, Fernandez E, Hoyle SD, Caillot S, Jurado-Molina J, Andréfouët S, Nicol SJ (2012) Interaction between coastal and oceanic ecosystems of the western and central Pacific Ocean through predator–prey relationship studies. PLOS ONE 7:e36701. doi: 10.1371/journal.pone.0036701
  3. Altabet MA (2001) Nitrogen isotopic evidence for micronutrient control of fractional NO3—utilization in the equatorial Pacific. Limnol Oceanogr 46:368–380CrossRefGoogle Scholar
  4. Altabet MA, Francois R (1994) Sedimentary nitrogen isotopic ratio as a recorder for surface nitrate utilization. Global Biogeochem Cycle 8:103–116CrossRefGoogle Scholar
  5. Berliner LM (1991) Likelihood and Bayesian prediction of chaotic systems. J Am Stat Assoc 86:938–952CrossRefGoogle Scholar
  6. Blum JD, Popp BN, Drazen JC, Choy CA, Johnson MW (2013) Methylmercury production below the mixed layer in the North Pacific Ocean. Nat Geosci 6:879–884CrossRefGoogle Scholar
  7. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Wadsworth, CAGoogle Scholar
  8. Campbell EP (2005) Statistical modeling in nonlinear systems. J Clim 18:3388–3399CrossRefGoogle Scholar
  9. Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978–983CrossRefPubMedGoogle Scholar
  10. Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91:167–216CrossRefGoogle Scholar
  11. Cherel Y, Sabatié R, Potier M, Marsac F, Ménard F (2007) New information from fish diets on the importance of glassy flying squid (Hyaloteuthis pelagica) (Teuthoidea: Ommastrephidae) in the epipelagic cephalopod community of the tropical Atlantic Ocean. Fish Bull 105:147–152Google Scholar
  12. Chipps SR, Garvey JE (2007) Assessment of food habits and feeding patterns. In: Guy C, Brown M (eds) Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda, MD, pp 473–514Google Scholar
  13. Choy CA, Popp BN, Kaneko JJ, Drazen JC (2009) The influence of depth on mercury levels in pelagic fishes and their prey. Proc Natl Acad Sci USA 106:13865–13869CrossRefPubMedCentralPubMedGoogle Scholar
  14. Choy CA, Davison PC, Drazen JC, Flynn A, Gier EJ, Hoffman JC, McClain-Counts JP, Miller TW, Popp BN, Ross SW, Sutton TT (2012) Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses. PLOS ONE 7:e50133. doi: 10.1371/journal.pone.0050133
  15. Choy CA, Portner E, Iwane M, Drazen JC (2013) Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar Ecol Prog Ser 492:169–184CrossRefGoogle Scholar
  16. Clarke LA, Pregibon D (1992) Tree-based models. In: Chambers JM, Hastie TJ (eds) Statistical Models in S. Wadsworth & Brooks/Cole, Pacific Grove, CA, pp 377–419Google Scholar
  17. Cox SP, Essington TE, Kitchell JF, Martell SJD, Walters CJ, Boggs C, Kaplan I (2002) Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952–1998. II. A preliminary assessment of the trophic impacts of fishing and effects on tuna dynamics. Can J Fish Aquat Sci 59:1736–1747CrossRefGoogle Scholar
  18. Ferriss BE, Essington TE (2014) Does trophic structure dictate mercury concentrations in top predators? A comparative analysis of pelagic food webs in the Pacific Ocean. Ecol Model 278:18–28CrossRefGoogle Scholar
  19. Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanogr 69:143–180CrossRefGoogle Scholar
  20. Goñi N, Logan J, Arrizabalaga H, Jarry M, Lutcavage M (2011) Diet of albacore tuna (Thunnus alalunga) in the Bay of Biscay and Mediterranean Sea using stomach content and stable isotope analyses. Mar Biol 158:1057–1073Google Scholar
  21. Gorni GR, Goitein R, Ferreira de Amorim A (2013) Description of diet of pelagic fish in the southwestern Atlantic, Brazil. Biota Neotropica 13:60–69Google Scholar
  22. Graham BS, Koch P, Newsome S, McMahon KW, Aurioles D (2010) Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes: understanding movement, pattern and processes on Earth through isotope mapping. Springer, New York, NY, pp 299–318CrossRefGoogle Scholar
  23. Griffiths SP, Young JW, Lansdell MJ, Campbell RA, Hampton J, Hoyle SD, Langley A, Bromhead D, Hinton MG (2010) Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern Australia. Rev Fish Biol Fisher 20:239–272CrossRefGoogle Scholar
  24. Hannides CCS, Popp BN, Choy AN, Drazen JC (2013) Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol Oceanogr 58:1931–1946CrossRefGoogle Scholar
  25. Heileman S, Mohammed E, Fanning P (2008) Scientific basis for ecosystem-based management in the Lesser Antilles including interactions with marine mammals and other top predators: derivation of diet compositions in the Lesser Antilles Pelagic Ecosystem FAO Technical Document 7, pp 1–77Google Scholar
  26. Hobday AJ (2010) Ensemble analysis of the future distribution of large pelagic fishes off Australia. Prog Oceanogr 86:291–301CrossRefGoogle Scholar
  27. Howell EA, Wabnitz CCC, Dunne JP, Polovina JJ (2013) Climate-induced primary productivity change and fishing impacts on the Central North Pacific ecosystem and Hawaii-based pelagic longline fishery. Clim Change 119:79–93CrossRefGoogle Scholar
  28. Jaquemet S, Potier M, Ménard F (2011) Do drifting and anchored Fish Aggregating Devices (FADs) similarly influence tuna feeding habits? A case study from the western Indian Ocean. Fish Res 107:283–290CrossRefGoogle Scholar
  29. Kahru M, Gille ST, Murtugudde R, Strutton PG, Manzano-Sarabia M, Wang H, Mitchell BG (2010) Global correlations between winds and ocean chlorophyll. J Geophys Res 115:1–11Google Scholar
  30. Keller DP, Oschlies A, Eby M (2012) A new marine ecosystem model for the University of Victoria Earth system climate model. Geosci Model Dev 5:1195–1220CrossRefGoogle Scholar
  31. Kloser RJ, Ryan TE, Young JW, Lewis ME (2009) Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges. ICES J Mar Sci 66:998–1006CrossRefGoogle Scholar
  32. Koslow JA, Williams A, Paxton JR (1997) A test of a method to extrapolate from local to global diversity. Biodivers Conserv 6:1523–1532CrossRefGoogle Scholar
  33. Kuhnert PM, Duffy LM, Young JW, Olson RJ (2012) Predicting fish diet composition using a bagged classification tree approach: a case study using yellowfin tuna (Thunnus albacares). Mar Biol 159:87–100CrossRefGoogle Scholar
  34. Lansdell M, Young J (2007) Pelagic cephalopods from eastern Australia: species composition, horizontal and vertical distribution determined from the diets of pelagic fishes. Rev Fish Biol Fish 17:125–138Google Scholar
  35. Levitus S, Antonov JI, Boyer TP, Locamini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:1–5Google Scholar
  36. Logan JM, Lutcavage ME (2013) Assessment of trophic dynamics of cephalopods and large pelagic fishes in the central North Atlantic Ocean using stable isotope analysis. Deep Sea Res Pt II 95:63–73CrossRefGoogle Scholar
  37. Logan J, Toppin R, Smith S, Galuardi B, Porter J, Lutcavage ME (2013) Contribution of cephalopod prey to the diet of large pelagic fish predators in the central North Atlantic Ocean. Deep Sea Res Pt 95:74–82Google Scholar
  38. Lorrain A, Graham BS, Popp BN, Allain V, Olson RJ, Hunt BPV, Potier M, Fry B, Galván-Magaña F, Menkes C, Kaehler S, Ménard F (2014) Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep-Sea Res Pt II. doi: 10.1016/j.dsr2.2014.02.003
  39. Ménard F, Lorrain A, Potier M, Marsac F (2007) Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Mar Biol 153:141–152CrossRefGoogle Scholar
  40. Ménard F, Potier M, Jaquemet S, Romanov E, Sabatié R, Cherel Y (2013) Pelagic cephalopods in the western Indian Ocean: new information from diets of top predators. Deep Sea Res Pt II 95:83–92Google Scholar
  41. Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Ac 48:1135–1140Google Scholar
  42. Navarro J, Coll M, Somes CJ, Olson RJ (2013) Trophic niche of squids: insights from isotopic data in marine systems worldwide. Deep Sea Res Pt II 95:93–102Google Scholar
  43. Nicol SJ, Allain V, Pilling GM, Polovina J, Coll M, Bell J, Dalzell P, Sharples P, Olson RJ, Griffiths S, Dambacher J, Young JW, Lewis A, Hampton J, Jurado-Molina J, Hoyle S, Briand K, Bax N, Lehodey P, Williams P (2013) An ocean observation system for monitoring the affects of climate change on the ecology and sustainability of pelagic fisheries in the Pacific Ocean. Climatic Change 119:131–145CrossRefGoogle Scholar
  44. Olson RJ, Watters GM (2003) A model of the pelagic ecosystem in the eastern tropical Pacific Ocean. Inter Am Trop Tuna Comm Bull 22:133–218Google Scholar
  45. Olson RJ, Popp BN, Graham BS, López-Ibarra GA, Galván-Magaña F, Lennert-Cody CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatorre-Ramírez V, Ballance LT, Fry B (2010) Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog Oceanogr 86:124–138CrossRefGoogle Scholar
  46. Olson RJ, Duffy LM, Kuhnert PM, Galván-Magaña F, Bocanegra-Castillo N, Alatorre-Ramírez V (2014) Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 497:157–178CrossRefGoogle Scholar
  47. Pagendam DE, Kuhnert PM, Leeds WB, Wikle CK, Bartley R, Peterson EE (2014) Assimilating catchment processes with monitoring data to estimate sediment loads to the Great Barrier Reef. Environmetrics. doi: 10.1002/env.2255 Google Scholar
  48. Parrish CC, Pethybridge H, Young JW, Nichols PD (2013) Spatial variation in fatty acid trophic markers in albacore tuna from the southwestern Pacific Ocean—a potential ‘tropicalization’ signal. Deep Sea Res Pt II. doi: 10.1016/j.dsr2.2013.12.003
  49. Parslow J, Cressie N, Campbell EP, Jones E, Murray L (2013) Bayesian learning and predictability in a stochastic nonlinear dynamical model. Ecol Appl 23:679–698CrossRefPubMedGoogle Scholar
  50. Pethybridge H, Daley RK, Nichols PD (2011) Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J Exp Mar Biol Ecol 409:290–299CrossRefGoogle Scholar
  51. Pethybridge H, Butler ECV, Cossa D, Daley R, Boudou A (2012) Trophic structure and biomagnification of mercury in an assemblage of deepwater chondrichthyans from southeastern Australia. Mar Ecol Prog Ser 451:163–174CrossRefGoogle Scholar
  52. Polovina JJ, Dunne JP, Woodworth PA, Howell EA (2011) Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J Mar Sci 68:986–995CrossRefGoogle Scholar
  53. Popp B, Graham B, Olson R, Hannides C, Lott M, López-Ibarra G, Galván-Magaña F, Fry B (2007) Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. In: Dawson T, Seigwolf R (eds) Isotopes as tracers of ecological change. Elsevier Academic Press, San Diego, CA, pp 173–190Google Scholar
  54. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  55. Potier M, Lechauve JJ, Bard FX, Sabatié R, Ménard F (2005) STOMAC: a database for storing information on stomach contents. Col Vol Sci Pap ICCAT 58:1662–1674Google Scholar
  56. Potier M, Marsac F, Cherel Y, Lucas V, Sabatié R, Maury O, Ménard F (2007) Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish Res 83:60–72CrossRefGoogle Scholar
  57. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-9000051-07-0. http://www.R-project.org/
  58. Revill AT, Young JW, Lansdell M (2009) Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Mar Biol 156:1241–1253CrossRefGoogle Scholar
  59. Romanov EV, Sakagawa G, Marsac F, Romanova N (2006) Historical database on Soviet tuna longline tuna research in the Indian and Atlantic oceans (first results of YugNIRO-NMFS data rescue project). In: Paper presented at the eighth session of the IOTC working party on tropical tunas. IOTC-2006-WPTT-10. IOTC, Seychelles, 32 pGoogle Scholar
  60. Romanov E, Potier M, Zamorov V, Ménard F (2009) The swimming crab Charybdis smithii: distribution, biology and trophic role in the pelagic ecosystem of the western Indian Ocean. Mar Biol 156:1089–1107CrossRefGoogle Scholar
  61. Sabatié R, Potier M, Broudin C, Seret B, Ménard F, Marsac F (2003) Preliminary analysis of some pelagic fish diet in the Eastern Central Atlantic. Col Vol Sci Pap ICCAT 55:292-302Google Scholar
  62. Somes CJ, Schmittner A, Galbraith ED, Lehmann MF, Altabet MA, Montoya JP, Letelier RM, Mix AC, Bourbonnais A, Eby M (2010) Simulating the global distribution of nitrogen isotopes in the ocean. Global Biogeochem Cy 24:GB4019Google Scholar
  63. Somes CJ, Oschlies A, Schmittner A (2013) Isotopic constraints on the pre-industrial oceanic nitrogen budget. Biogeosciences 10:5889–5910CrossRefGoogle Scholar
  64. Staudinger MD, Juanes F, Salmon B, Teffer AK (2013) The distribution, diversity, and importance of cephalopods in top predator diets from offshore habitats of the Northwest Atlantic Ocean. Deep Sea Res Pt II 95:182–192Google Scholar
  65. Tagliabue A, Bopp L (2008) Towards understanding global variability in ocean carbon-13. Global Biogeochem Cy 22:1025Google Scholar
  66. Teffer AK (2012) Heavy metal food chain: relating feeding ecology and mercury bioaccumulation of southern New England’s top pelagic predators. Master’s Thesis. University of Massachusetts, Amherst, MAGoogle Scholar
  67. Tesdal JE, Galbraith ED, Kienast M (2012) The marine sedimentary nitrogen isotope record. Biogeosci Dis 9:4067–4097CrossRefGoogle Scholar
  68. Tewksbury J, Anderson JG, Bakker JD, Billo TJ, Dunwiddie PW, Groom MJ, Hampton SE et al (2014) Natural history’s place in science and society. Bioscience 64:300–310CrossRefGoogle Scholar
  69. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182CrossRefPubMedGoogle Scholar
  70. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic Earth system climate model: model description, climatology, and applications to past, present and future climates. Atmos Ocean 39:361–428Google Scholar
  71. West JB, Bowen GJ, Dawson TE, Tu KP (eds) (2010) Isoscapes: Understanding movement, pattern, and processing on Earth through isotope mapping. Springer, New York, NYGoogle Scholar
  72. Wikle CK, Berliner LM (2007) A Bayesian tutorial for data assimilation. Physica D 230:1–16Google Scholar
  73. Wilson C, Qiu X (2008) Global distribution of summer chlorophyll blooms in the oligotrophic gyres. Prog Oceanogr 78:107–134CrossRefGoogle Scholar
  74. Woodworth-Jefcoats PA, Polovina JJ, Dunne JP, Blanchard JL (2013) Ecosystem size structure response to 21st century climate projection: large fish abundance decreases in the central North Pacific and increases in the California Current. Global Change Biol 19(3):724–733CrossRefGoogle Scholar
  75. Young JW, Lamb TD, Le D, Bradford RW, Whitelaw AW (1997) Feeding ecology and interannual variations in diet of southern bluefin tuna, Thunnus maccoyii, in relation to coastal and oceanic waters off eastern Tasmania, Australia. Environ Biol Fish 50:275–291CrossRefGoogle Scholar
  76. Young JW, Lansdell MJ, Campbell RA, Cooper SP, Juanes F, Guest MA (2010) Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar Biol 157:2347–2368CrossRefGoogle Scholar
  77. Young JW, Hobday AJ, Campbell RA, Kloser RJ, Bonham PI, Clementson LA, Lansdell MJ (2011) The biological oceanography of the East Australian Current and surrounding waters in relation to tuna and billfish catches off eastern, Australia. Deep Sea Res Pt 58:720–733CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. W. Young
    • 1
    Email author
  • R. J. Olson
    • 2
  • F. Ménard
    • 3
  • P. M. Kuhnert
    • 4
  • L. M. Duffy
    • 2
  • V. Allain
    • 5
  • J. M. Logan
    • 6
  • A. Lorrain
    • 7
  • C. J. Somes
    • 8
  • B. Graham
    • 9
  • N. Goñi
    • 10
  • H. Pethybridge
    • 1
  • M. Simier
    • 3
  • M. Potier
    • 3
  • E. Romanov
    • 11
  • D. Pagendam
    • 12
  • C. Hannides
    • 13
    • 14
  • C. A. Choy
    • 14
  1. 1.CSIRO Ocean and Atmosphere FlagshipHobartAustralia
  2. 2.Inter-American Tropical Tuna CommissionLa JollaUSA
  3. 3.Institut de Recherche pour le Développement (IRD)UMR 212 EME (IRD/IFREMER/UM2)Sète CedexFrance
  4. 4.CSIRO Digital Productivity and Services Flagship, PMB2Glen OsmondAustralia
  5. 5.Secretariat of the Pacific Community (SPC)Nouméa CedexNew Caledonia
  6. 6.Massachusetts Division of Marine FisheriesNew BedfordUSA
  7. 7.Institut de Recherche pour le Développement (IRD)R 195 LEMAR, UMR 6539Nouméa CedexNew Caledonia
  8. 8.GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
  9. 9.National Institute of Water and Atmospheric Research Ltd. (NIWA)WellingtonNew Zealand
  10. 10.AZTI-Tecnalia/Marine ResearchPasaiaSpain
  11. 11.PROSPER ProjectCAP RUN, ARDALe PortFrance
  12. 12.CSIRO Computational Informatics, EcoSciences PrecinctBrisbaneAustralia
  13. 13.Department of Geology and GeophysicsUniversity of HawaiiHonoluluUSA
  14. 14.Department of OceanographyUniversity of HawaiiHonoluluUSA

Personalised recommendations