Reviews in Fish Biology and Fisheries

, Volume 25, Issue 1, pp 21–37

Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish

  • Guillaume Rieucau
  • Anders Fernö
  • Christos C. Ioannou
  • Nils Olav Handegard
Reviews

Abstract

Avoiding predation is generally seen as the most common explanation for why animals aggregate. However, it remains questionable whether the existing theory provides a complete explanation of the functions of large shoals formation in marine fishes. Here, we consider how well the mechanisms commonly proposed to explain enhanced safety of group living prey explain fish shoals reaching very large sizes. By conceptually re-examining these mechanisms for large marine shoals, we find little support from either empirical studies or classical models. We address first the importance of reassessing the functional theory with predator-dependent models and the need to consider factors other than predation to explain massive fish shoals. Second, we argue that taking into account the interplay between ultimate benefits and proximate perspectives is a key step in understanding large fish shoals in marine ecosystems. Third, we present the growing body of evidence from field studies that identify shoal internal structure as an important feature for how large shoals can form, maintain and react as a coordinated unit to external stimuli. In particular, we consider a mechanistic basis of local rules of interaction for group formation and collective dynamic properties that can account for groups reaching very large sizes. Recent research in collective animal behaviour has shifted focus from the importance of global properties (group size) to local properties (local density and information transfer). In contrast to studies of fish shoals in the laboratory, the difficulty in measuring behaviour in large shoals in marine systems remains a major constraint to further work. Advances in acoustical observation have shown the greatest potential to provide data that can link proximate mechanisms in, and ultimate functions of, large marine fish shoals.

Keywords

Large marine fish aggregations Shoaling behaviour Collective behaviour functional explanations Local properties Shoal internal structure 

References

  1. Abrahams MV, Kattenfeld MG (1997) The role of turbidity as a constraint on predator–prey interactions in aquatic environments. Behav Ecol Sociobiol 40(3):169–174. doi:10.1007/s002650050330 Google Scholar
  2. Aoki I (1982) A simulation study on the schooling mechanism in fish. Bull Jap Soc Sci Fish 48(8):1081–1088Google Scholar
  3. Axelsen BrE, Nøttestad L, Fernö A, Johannessen A, Misund OA (2000) ‘Await’ in the pelagic: dynamic trade-off between reproduction and survival within a herring school splitting vertically during spawning. Mar Ecol Prog Ser 205:259–269. doi:10.3354/meps205259 Google Scholar
  4. Axelsen BE, Anker-Nilssen T, Fossum P, Kvamme C, Nøttestad L (2001) Pretty patterns but a simple strategy: predator–prey interactions between juvenile herring and Atlantic puffins observed with multibeam sonar. Can J Zool 79(9):1586–1596. doi:10.1139/z01-113 Google Scholar
  5. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim Behav 76(1):201–215. doi:10.1016/j.anbehav.2008.02.004 Google Scholar
  6. Barber I, Huntingford FA (1995) The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus. Behaviour 132(15–16):1223–1240. doi:10.1163/156853995x00540 Google Scholar
  7. Barber I, Huntingford FA (1996) Parasite infection alters schooling behaviour: deviant positioning of helminth-infected minnows in conspecific groups. Proc R Soc London Ser B Biol Sci 263(1374):1095–1102. doi:10.1098/rspb.1996.0161 Google Scholar
  8. Barber I, Rushbrook BJ (2008) Parasites and fish behaviour. In: Magnhagen C, Braithwaite VA, Forsgren E, Kapoor BG (eds) fish behaviour. Science Publishers, Enfield, pp 525–561Google Scholar
  9. Barnard CJ, Sibly RM (1981) Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim Behav 29(2):543–550. doi:10.1016/s0003-3472(81)80117-0 Google Scholar
  10. Barta Z, Flynn R, Giraldeau L-A (1997) Geometry for a selfish foraging group: a genetic algorithm approach. Proc R Soc Lond Ser B Biol Sci 264(1385):1233–1238. doi:10.1098/rspb.1997.0170 Google Scholar
  11. Beauchamp G, Ruxton GD (2007) False alarms and the evolution of antipredator vigilance. Anim Behav 74(5):1199–1206. doi:10.1016/j.anbehav.2007.02.014 Google Scholar
  12. Bednekoff PA, Lima SL (1998) Re–examining safety in numbers: interactions between risk dilution and collective detection depend upon predator targeting behaviour. Proc R Soc Lond Ser B Biol Sci 265(1409):2021–2026. doi:10.1098/rspb.1998.0535 Google Scholar
  13. Berdahl A, Torney CJ, Ioannou CC, Faria JJ, Couzin ID (2013) Emergent sensing of complex environments by mobile animal groups. Science 339(6119):574–576. doi:10.1126/science.1225883 PubMedGoogle Scholar
  14. Bertram BCR (1978) Living in groups: predators and prey. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, vol 1. Blackwell Scientific Publications, Oxford, pp 64–96Google Scholar
  15. Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M, Walczak AM (2012) Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci USA 109(13):4786–4791. doi:10.1073/pnas.1118633109 PubMedCentralPubMedGoogle Scholar
  16. Blaxter JHS (1985) The herring: a successful species? Can J Fish Aquat Sci 42(S1):21–30. doi:10.1139/f85-259 Google Scholar
  17. Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20(19):1758–1762. doi:10.1016/j.cub.2010.08.041 PubMedGoogle Scholar
  18. Bumann D, Krause J, Rubenstein D (1997) Mortality risk of spatial positions in animal groups: the danger of being in the front. Behaviour 134(13–14):1063–1076. doi:10.1163/156853997x00403 Google Scholar
  19. Caro T (2005) Antipredator defenses in birds and mammals. University of Chicago Press, ChicagoGoogle Scholar
  20. Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M (2010) Scale-free correlations in starling flocks. Proc Natl Acad Sci USA 107(26):11865–11870. doi:10.1073/pnas.1005766107 PubMedCentralPubMedGoogle Scholar
  21. Chicoli A, Butail S, Lun Y, Bak-Coleman J, Coombs S, Paley DA (2014) The effects of flow on schooling Devario aequipinnatus: school structure, startle response and information transmission. J Fish Biol 84(5):1401–1421. doi:10.1111/jfb.12365 PubMedGoogle Scholar
  22. Colagross A, Cockburn A (1993) Vigilance and grouping in the Eastern gray kangaroo, Macropus giganteus. Aust J Zool 41(4):325–334. doi:10.1071/ZO9930325 Google Scholar
  23. Connell SD (2000) Is there safety-in-numbers for prey? Oikos 88(3):527–532. doi:10.1034/j.1600-0706.2000.880308.x Google Scholar
  24. Corten A (1999) A proposed mechanism for the Bohuslän herring periods. ICES J Mar Sci 56(2):207–220. doi:10.1006/jmsc.1998.0429 Google Scholar
  25. Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11. doi:10.1006/jtbi.2002.3065 PubMedGoogle Scholar
  26. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433(7025):513–516. doi:10.1038/nature03236 PubMedGoogle Scholar
  27. Cresswell W (1994) Flocking is an effective anti-predation strategy in redshanks, Tringa totanus. Anim Behav 47(2):433–442. doi:10.1006/anbe.1994.1057 Google Scholar
  28. Cresswell W, Quinn JL (2010) Attack frequency, attack success and choice of prey group size for two predators with contrasting hunting strategies. Anim Behav 80(4):643–648. doi:10.1016/j.anbehav.2010.06.024 Google Scholar
  29. Dehn M (1990) Vigilance for predators: detection and dilution effects. Behav Ecol Sociobiol 26(5):337–342. doi:10.1007/bf00171099 Google Scholar
  30. Delcourt J, Poncin P (2012) Shoals and schools: back to the heuristic definitions and quantitative references. Rev Fish Biol Fish 22(3):595–619. doi:10.1007/s11160-012-9260-z Google Scholar
  31. Dommasnes A, Rey F, Røttingen I (1994) Reduced oxygen concentrations in herring wintering areas. ICES J Mar Sci 51(1):63–69. doi:10.1006/jmsc.1994.1006 Google Scholar
  32. Elgar MA (1989) Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev 64(1):13–33. doi:10.1111/j.1469-185X.1989.tb00636.x PubMedGoogle Scholar
  33. Fernö A, Pitcher TJ, Melle W, Nøttestad L, Mackinson S, Hollingworth C, Misund OA (1998) The challenge of the herring in the Norwegian sea: making optimal collective spatial decisions. Sarsia 83(2):149–167. doi:10.1080/00364827.1998.10413679 Google Scholar
  34. Foster WA, Treherne JE (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293(5832):466–467Google Scholar
  35. Fréon P, Gerlotto F, Soria M (1992) Changes in school structure according to external stimuli: description and influence on acoustic assessment. Fish Res 15(1–2):45–66. doi:10.1016/0165-7836(92)90004-d Google Scholar
  36. Freon P, Gerlotto F, Soria M (1993) Variability of Harengula spp. school reactions to boats or predators in shallow water. ICES Mar Sci Symp 196:30–35Google Scholar
  37. Fréon P, Gerlotto F, Soria M (1996) Diel variability of school structure with special reference to transition periods. ICES J Mar Sci 53(2):459–464. doi:10.1006/jmsc.1996.0065 Google Scholar
  38. Gautrais J, Ginelli F, Fournier R, Blanco S, Soria M, Chaté H, Theraulaz G (2012) Deciphering interactions in moving animal groups. PLoS Comp Biol 8(9):e1002678. doi:10.1371/journal.pcbi.1002678 Google Scholar
  39. Gerlotto F, Paramo J (2003) The three-dimensional morphology and internal structure of clupeid schools as observed using vertical scanning multibeam sonar. Aquat Living Resour 16(3):113–122. doi:10.1016/S0990-7440(03)00027-5 Google Scholar
  40. Gerlotto F, Castillo J, Saavedra A, Barbieri MA, Espejo M, Cotel P (2004) Three-dimensional structure and avoidance behaviour of anchovy and common sardine schools in central southern Chile. ICES J Mar Sci 61(7):1120–1126. doi:10.1016/j.icesjms.2004.07.017 Google Scholar
  41. Gerlotto F, Bertrand S, Bez N, Gutierrez M (2006) Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J Mar Sci 63(8):1405–1417. doi:10.1016/j.icesjms.2006.04.023 Google Scholar
  42. Giardina I (2008) Collective behavior in animal groups: theoretical models and empirical studies. HFSP J 2(4):205–219. doi:10.2976/1.2961038 PubMedCentralPubMedGoogle Scholar
  43. Giraldeau LA, Beauchamp G (1999) Food exploitation: searching for the optimal joining policy. Trends Ecol Evol 14(3):102–106PubMedGoogle Scholar
  44. Giraldeau L-A, Caraco T (2000) Social foraging theory. Princeton University Press, PrincetonGoogle Scholar
  45. Goldbogen JA, Calambokidis J, Shadwick RE, Oleson EM, McDonald MA, Hildebrand JA (2006) Kinematics of foraging dives and lunge-feeding in fin whales. J Exp Biol 209(7):1231–1244. doi:10.1242/jeb.02135 PubMedGoogle Scholar
  46. Goldbogen JA, Calambokidis J, Croll DA, Harvey JT, Newton KM, Oleson EM, Schorr G, Shadwick RE (2008) Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J Exp Biol 211(23):3712–3719. doi:10.1242/jeb.023366 PubMedGoogle Scholar
  47. Grünbaum D (1998) Schooling as a strategy for taxis in a noisy environment. Evol Ecol 12(5):503–522. doi:10.1023/a:1006574607845 Google Scholar
  48. Hamblin S, Mathot KJ, Morand-Ferron J, Nocera JJ, Rieucau G, Giraldeau L-A (2010) Predator inadvertent social information use favours reduced clumping of its prey. Oikos 119(2):286–291. doi:10.1111/j.1600-0706.2009.17400.x Google Scholar
  49. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31(2):295–311. doi:10.1016/0022-5193(71)90189-5 PubMedGoogle Scholar
  50. Handegard NO, Boswell KM, Ioannou CC, Leblanc SP, Tjøstheim DB, Couzin ID (2012) The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr Biol 22(13):1213–1217. doi:10.1016/j.cub.2012.04.050 PubMedGoogle Scholar
  51. Hemelrijk CK, Hildenbrandt H (2012) Schools of fish and flocks of birds: their shape and internal structure by self-organization. Interface Focus 2(6):726–737. doi:10.1098/rsfs.2012.0025 PubMedCentralPubMedGoogle Scholar
  52. Hemelrijk CK, Reid DAP, Hildenbrandt H, Padding JT (2014) The increased efficiency of fish swimming in a school. Fish Fish:n/a-n/a. doi:10.1111/faf.12072 Google Scholar
  53. Hensor EMA, Godin JGJ, Hoare DJ, Krause J (2003) Effects of nutritional state on the shoaling tendency of banded killifish, Fundulus diaphanus, in the field. Anim Behav 65(4):663–669. doi:10.1006/anbe.2003.2075 Google Scholar
  54. Herbert-Read JE, Perna A, Mann RP, Schaerf TM, Sumpter DJT, Ward AJW (2011) Inferring the rules of interaction of shoaling fish. Proc Natl Acad Sci USA 108(46):18726–18731. doi:10.1073/pnas.1109355108 PubMedCentralPubMedGoogle Scholar
  55. Hoare DJ, Couzin ID, Godin JGJ, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67(1):155–164. doi:10.1016/j.anbehav.2003.04.004 Google Scholar
  56. Holmin AJ, Handegard NO, Korneliussen RJ, Tjostheim D (2012) Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment. J Acoust Soc Am 132(6):3720–3734PubMedGoogle Scholar
  57. Huse G, Railsback S, Fernö A (2002) Modelling changes in migration pattern of herring: collective behaviour and numerical domination. J Fish Biol 60(3):571–582. doi:10.1111/j.1095-8649.2002.tb01685.x Google Scholar
  58. Inman AJ, Krebs J (1987) Predation and group living. Trends Ecol Evol 2(2):31–32. doi:10.1016/0169-5347(87)90093-0 Google Scholar
  59. Ioannou CC, Krause J (2008) Searching for prey: the effects of group size and number. Anim Behav 75(4):1383–1388. doi:10.1016/j.anbehav.2007.09.012 Google Scholar
  60. Ioannou CC, Tosh CR, Neville L, Krause J (2008) The confusion effect—from neural networks to reduced predation risk. Behav Ecol 19(1):126–130. doi:10.1093/beheco/arm109 Google Scholar
  61. Ioannou CC, Morrell LJ, Ruxton GD, Krause J (2009) The effect of prey density on predators: conspicuousness and attack success are sensitive to spatial scale. Am Nat 173:499–506PubMedGoogle Scholar
  62. Ioannou CC, Bartumeus F, Krause J, Ruxton GD (2011a) Unified effects of aggregation reveal larger prey groups take longer to find. Proc R Soc B Biol Sci 278(1720):2985–2990. doi:10.1098/rspb.2011.0003 Google Scholar
  63. Ioannou CC, Couzin ID, James R, Croft DP, Krause J (2011b) Social organisation and information transfer in schooling fish. In: Brown C, Laland KN, Krause J (eds) Fish cognition and behavior. Blackwell Publishing Ltd, Oxford, pp 217–239Google Scholar
  64. Ioannou CC, Guttal V, Couzin ID (2012) Predatory fish select for coordinated collective motion in virtual prey. Science 337(6099):1212–1215. doi:10.1126/science.1218919 PubMedGoogle Scholar
  65. Jonsgård Å (1966) Biology of the North Atlantic fin whale Balaenoptera physalus (L.): taxonomy, distribution, migration and food. Hvalrdets Skr 49:1–62Google Scholar
  66. Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID (2011) Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci USA 108(46):18720–18725. doi:10.1073/pnas.1107583108 PubMedCentralPubMedGoogle Scholar
  67. Krakauer DC (1995) Groups confuse predators by exploiting perceptual bottlenecks: a connectionist model of the confusion effect. Behav Ecol Sociobiol 36(6):421–429. doi:10.1007/bf00177338 Google Scholar
  68. Krause J (1994) Differential fitness returns in relation to spatial position in groups. Biol Rev 69(2):187–206. doi:10.1111/j.1469-185X.1994.tb01505.x PubMedGoogle Scholar
  69. Krause J, Ruxton GD (2002) Living in groups. vol Oxford series in ecology and evolution. Oxford University Press, USAGoogle Scholar
  70. Krause J, Tegeder RW (1994) The mechanism of aggregation behaviour in fish shoals: individuals minimize approach time to neighbours. Anim Behav 48(2):353–359. doi:10.1006/anbe.1994.1248 Google Scholar
  71. Kunz H, Hemelrijk CK (2012) Simulations of the social organization of large schools of fish whose perception is obstructed. Appl Anim Behav Sci 138(3–4):142–151. doi:10.1016/j.applanim.2012.02.002 Google Scholar
  72. Landeau L, Terborgh J (1986) Oddity and the ‘confusion effect’ in predation. Anim Behav 34(5):1372–1380. doi:10.1016/s0003-3472(86)80208-1 Google Scholar
  73. Langård L, Fatnes O, Johannessen A, Skaret G, Axelsen B, Nøttestad L, Slotte A, Jensen K, Fernö A (2014) State-dependent spatial and intra-school dynamics in pre-spawning herring Clupea harengus in a semi-enclosed ecosystem. Mar Ecol Prog Ser 501:251–263. doi:10.3354/meps10718 Google Scholar
  74. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206(6):1059–1073. doi:10.1242/jeb.00209 PubMedGoogle Scholar
  75. Lima SL (1995a) Back to the basics of anti-predatory vigilance: the group-size effect. Anim Behav 49(1):11–20. doi:10.1016/0003-3472(95)80149-9 Google Scholar
  76. Lima SL (1995b) Collective detection of predatory attack by social foragers: fraught with ambiguity? Anim Behav 50(4):1097–1108. doi:10.1016/0003-3472(95)80109-x Google Scholar
  77. Lima SL (2002) Putting predators back into behavioral predator–prey interactions. Trends Ecol Evol 17(2):70–75. doi:10.1016/s0169-5347(01)02393-x Google Scholar
  78. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68(4):619–640. doi:10.1139/z90-092 Google Scholar
  79. Lima SL, Zollner PA (1996) Anti-predatory vigilance and the limits to collective detection: visual and spatial separation between foragers. Behav Ecol Sociobiol 38(5):355–363. doi:10.1007/s002650050252 Google Scholar
  80. Lukeman R, Li Y-X, Edelstein-Keshet L (2010) Inferring individual rules from collective behavior. Proc Natl Acad Sci USA 107(28):12576–12580. doi:10.1073/pnas.1001763107 PubMedCentralPubMedGoogle Scholar
  81. Mackinson S, Nøttestad L, Guénette S, Pitcher T, Misund OA, Fernö A (1999) Cross-scale observations on distribution and behavioural dynamics of ocean feeding Norwegian spring-spawning herring (Clupea harengus L.). ICES J Mar Sci 56(5):613–626. doi:10.1006/jmsc.1999.0513 Google Scholar
  82. Magurran AE (1986) The development of shoaling behaviour in the European minnow, Phoxinus phoxinus. J Fish Biol 29:159–169Google Scholar
  83. Magurran AE (1990) The adaptive significance of schooling as an anti-predator defense in fish. Ann Zool Fenn 27:51–66Google Scholar
  84. Magurran AE, Pitcher TJ (1987) Provenance, shoal size and the sociobiology of predator-evasion behaviour in minnow shoals. Proc R Soc Lond Ser B Biol Sci 229(1257):439–465. doi:10.1098/rspb.1987.0004 Google Scholar
  85. Major PF (1978) Predator–prey interactions in two schooling fishes, Caranx ignobilis and Stolephorus purpureus. Anim Behav 26(3):760–777. doi:10.1016/0003-3472(78)90142-2 Google Scholar
  86. Makris NC, Ratilal P, Symonds DT, Jagannathan S, Lee S, Nero RW (2006) Fish population and behavior revealed by instantaneous continental shelf-scale imaging. Science 311(5761):660–663. doi:10.1126/science.1121756 PubMedGoogle Scholar
  87. Makris NC, Ratilal P, Jagannathan S, Gong Z, Andrews M, Bertsatos I, Godø OR, Nero RW, Jech JM (2009) Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323(5922):1734–1737. doi:10.1126/science.1169441 PubMedGoogle Scholar
  88. Marras S, Batty RS, Domenici P (2012) Information transfer and antipredator maneuvers in schooling herring. Adapt Behav 20(1):44–56. doi:10.1177/1059712311426799
  89. McNamara JM, Houston AI (1992) Evolutionarily stable levels of vigilance as a function of group size. Anim Behav 43(4):641–658. doi:10.1016/s0003-3472(05)81023-1 Google Scholar
  90. Milinski M (1977a) Do all members of a swarm suffer the same predation? Zeitschrift für Tierpsychologie 45(4):373–388. doi:10.1111/j.1439-0310.1977.tb02027.x Google Scholar
  91. Milinski M (1977b) Experiments on the selection by predators against spatial oddity of their prey. Zeitschrift für Tierpsychologie 43(3):311–325. doi:10.1111/j.1439-0310.1977.tb00078.x Google Scholar
  92. Milinski M (1984) A predator’s costs of overcoming the confusion-effect of swarming prey. Anim Behav 32(4):1157–1162. doi:10.1016/S0003-3472(84)80232-8 Google Scholar
  93. Miller RC (1922) The significance of the gregarious habit. Ecology 3(2):122–126Google Scholar
  94. Misund OA (1993) Dynamics of moving masses: variability in packing density, shape, and size among herring, sprat, and saithe schools. ICES J Mar Sci 50(2):145–160. doi:10.1006/jmsc.1993.1016 Google Scholar
  95. Misund OA (1990) Sonar observations of schooling herring: school dimensions, swimming behaviour, and avoidance of vessel and purse seine. Rapp P-V Réun Cons Int Explor Mer 189:135–146Google Scholar
  96. Morrell LJ, Romey WL (2008) Optimal individual positions within animal groups. Behav Ecol 19(4):909–919. doi:10.1093/beheco/arn050 Google Scholar
  97. Morrell LJ, Ruxton GD, James R (2011) The temporal selfish herd: predation risk while aggregations form. Proc R Soc B Biol Sci 278(1705):605–612. doi:10.1098/rspb.2010.1605 Google Scholar
  98. Nøttestad L, Aksland M, Beltestad A, Fernö A, Johannessen A, Misund OA (1996) Schooling dynamics of Norwegian spring spawning herring (Clupea harengus L.) in a coastal spawning area. Sarsia 80(4):277–284Google Scholar
  99. Nøttestad L, Fernö A, Mackinson S, Pitcher T, Misund OA (2002) How whales influence herring school dynamics in a cold-front area of the Norwegian Sea. ICES J Mar Sci 59(2):393–400. doi:10.1006/jmsc.2001.1172 Google Scholar
  100. Nøttestad L, Fernö A, Misund OA, Vabø R (2004) Understanding herring behaviour: linking individual decisions, school patterns and population distribution. In: Skjoldal HR, Sætre R, Fernö A, Misund OA, Røttingen I (eds) The Norwegian Sea Ecosystem. Tapir Academic Press, TrondheimGoogle Scholar
  101. Paramo J, Bertrand S, Villalobos H, Gerlotto F (2007) A three-dimensional approach to school typology using vertical scanning multibeam sonar. Fish Res 84(2):171–179. doi:10.1016/j.fishres.2006.10.023 Google Scholar
  102. Paramo J, Gerlotto F, Oyarzun C (2010) Three dimensional structure and morphology of pelagic fish schools. J Appl Ichthyol 26(6):853–860. doi:10.1111/j.1439-0426.2010.01509.x Google Scholar
  103. Parker GA (1984) The producer/scrounger model and its relevance to sexuality. In: Barnard CJ (ed) Producers and scroungers: strategies of exploitation and parasitism. Chapman and Hall, London, pp 127–153Google Scholar
  104. Parrish JK (1989) Re-examining the selfish herd: are central fish safer? Anim Behav 38(6):1048–1053. doi:10.1016/s0003-3472(89)80143-5 Google Scholar
  105. Parrish JK (1991) Do predators ‘shape’ fish schools: interactions between predators and their schooling prey. Neth J Zool 42(2–3):358–370. doi:10.1163/156854291x00388 Google Scholar
  106. Parrish JK, Strand SW, Lott JL (1989) Predation on a school of flat-iron herring, Harengula thrissina. Copeia 4:1089–1091Google Scholar
  107. Parrish JK, Viscido SV, Grünbaum D (2002) Self-organized fish schools: an examination of emergent properties. Biol Bull 202(3):296–305PubMedGoogle Scholar
  108. Partridge BL, Pitcher TJ (1979) Evidence against a hydrodynamic function for fish schools. Nature 279(5712):418–419PubMedGoogle Scholar
  109. Pitcher TJ (1983) Heuristic definitions of fish shoaling behaviour. Anim Behav 31(2):611–613. doi:10.1016/S0003-3472(83)80087-6 Google Scholar
  110. Pitcher TJ, Parrish JK (1993) The functions of shoaling behaviour. In: Pitcher TJ (ed) The behaviour of teleost fishes, vol 2. Chapman and Hall, London, pp 363–439Google Scholar
  111. Pitcher TJ, Partridge BL, Wardle CS (1976) A blind fish can school. Science 194(4268):963–965PubMedGoogle Scholar
  112. Pitcher TJ, Magurran AE, Winfield IJ (1982) Fish in larger shoals find food faster. Behav Ecol Sociobiol 10(2):149–151. doi:10.1007/bf00300175 Google Scholar
  113. Poulin R, FitzGerald GJ (1989) Shoaling as an anti-ectoparasite mechanism in juvenile sticklebacks (Gasterosteus spp.). Behav Ecol Sociobiol 24(4):251–255. doi:10.1007/bf00295205 Google Scholar
  114. Proctor CJ, Broom M, Ruxton GD (2003) A communication-based spatial model ofantipredator vigilance. J Theor Biol 220(1):123–137. doi:10.1006/jtbi.2003.3159 PubMedGoogle Scholar
  115. Pulliam HR (1973) On the advantages of flocking. J Theor Biol 38(2):419–422PubMedGoogle Scholar
  116. Pulliam HR, Caraco T (1984) Living in groups: is there an optimal group size? In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, vol 2. Wiley, New York, pp 122–147Google Scholar
  117. Quinn TP, Fresh K (1984) Homing and straying in chinook salmon (Oncorhynchus tshawytscha) from Cowlitz river hatchery, Washington. Can J Fish Aquat Sci 41(7):1078–1082. doi:10.1139/f84-126 Google Scholar
  118. Radakov DV (1973) Schooling in the ecology of fish. Wiley, New YorkGoogle Scholar
  119. Rayor L, Uetz G (1990) Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behav Ecol Sociobiol 27(2):77–85. doi:10.1007/bf00168449 Google Scholar
  120. Reebs SG, Saulnier N (1997) The effect of hunger on shoal choice in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas). Ethology 103(8):642–652. doi:10.1111/j.1439-0310.1997.tb00175.x Google Scholar
  121. Reluga TC, Viscido S (2005) Simulated evolution of selfish herd behavior. J Theor Biol 234(2):213–225. doi:10.1016/j.jtbi.2004.11.035 PubMedGoogle Scholar
  122. Rieucau G, Martin JGA (2008) Many eyes or many ewes: vigilance tactics in female bighorn sheep Ovis canadensis vary according to reproductive status. Oikos 117(4):501–506. doi:10.1111/j.0030-1299.2008.16274.x Google Scholar
  123. Rieucau G, Blanchard P, Martin JGA, Favreau F-R, Goldizen AW, Pays O (2012) Investigating differences in vigilance tactic use within and between the sexes in eastern grey kangaroos. PLoS ONE 7(9):e44801. doi:10.1371/journal.pone.0044801 PubMedCentralPubMedGoogle Scholar
  124. Rieucau G, Boswell KM, De Robertis A, Macaulay GJ, Handegard NO (2014) Experimental evidence of threat-sensitive collective avoidance responses in a large wild-caught herring school. PLoS ONE 9(1):e86726. doi:10.1371/journal.pone.0086726 PubMedCentralPubMedGoogle Scholar
  125. Rieucau G, De Robertis A, Boswell KM, Handegard NO (in press) School density affects the strenght of collective antipredatory responses in wild-caught herring (Clupea harengus): A simulated predator encounter experiment. J Fish BiolGoogle Scholar
  126. Robinson CJ, Pitcher TJ (1989) The influence of hunger and ration level on shoal density, polarization and swimming speed of herring, Clupea harengus L. J Fish Biol 34(4):631–633. doi:10.1111/j.1095-8649.1989.tb03341.x Google Scholar
  127. Rode NO, Lievens EJP, Flaven E, Segard A, Jabbour-Zahab R, Sanchez MI, Lenormand T (2013) Why join groups? Lessons from parasite-manipulated Artemia. Ecol Lett. doi:10.1111/ele.12074 PubMedGoogle Scholar
  128. Ruxton GD, Jackson AL, Tosh CR (2007) Confusion of predators does not rely on specialist coordinated behavior. Behav Ecol 18(3):590–596. doi:10.1093/beheco/arm009 Google Scholar
  129. Sfakiotakis M, Lane DM, Davis JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252Google Scholar
  130. Sibly RM (1983) Optimal group size is unstable. Anim Behav 31(3):947–948. doi:10.1016/S0003-3472(83)80250-4 Google Scholar
  131. Simons AM (2004) Many wrongs: the advantage of group navigation. Trends Ecol Evol 19(9):453–455. doi:10.1016/j.tree.2004.07.001 PubMedGoogle Scholar
  132. Skaret G, Nøttestad L, Fernö A, Johannessen A, Axelsen BE (2003) Spawning of herring: day or night, today or tomorrow? Aquat Living Resour 16(03):299–306. doi:10.1016/S0990-7440(03)00006-8 Google Scholar
  133. Sogard SM, Olla BL (1997) The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environ Biol Fishes 50(4):405–413. doi:10.1023/a:1007393307007 Google Scholar
  134. Soria M, Bahri T, Gerlotto F (2003) Effect of external factors (environment and survey vessel) on fish school characteristics observed by echosounder and multibeam sonar in the Mediterranean Sea. Aquat Living Resour 16(3):145–157. doi:10.1016/s0990-7440(03)00025-1 Google Scholar
  135. Stankowich T (2003) Marginal predation methodologies and the importance of predator preferences. Anim Behav 66(3):589–599. doi:10.1006/anbe.2003.2232 Google Scholar
  136. Strandburg-Peshkin A, Twomey CR, Bode NWF, Kao AB, Katz Y, Ioannou CC, Rosenthal SB, Torney CJ, Wu HS, Levin SA, Couzin ID (2013) Visual sensory networks and effective information transfer in animal groups. Curr Biol 23(17):R709–R711. doi:10.1016/j.cub.2013.07.059 PubMedGoogle Scholar
  137. Torney C, Neufeld Z, Couzin ID (2009) Context-dependent interaction leads to emergent search behavior in social aggregates. Proc Natl Acad Sci USA 106(52):22055–22060. doi:10.1073/pnas.0907929106 PubMedCentralPubMedGoogle Scholar
  138. Tosh CR (2011) Which conditions promote negative density dependent selection on prey aggregations? J Theor Biol 281(1):24–30. doi:10.1016/j.jtbi.2011.04.014 PubMedGoogle Scholar
  139. Tosh CR, Jackson AL, Ruxton GD (2006) The confusion effect in predatory neural networks. Am Nat 167(2):E52–E65. doi:10.1086/499413 PubMedGoogle Scholar
  140. Treherne JE, Foster WA (1981) Group transmission of predator avoidance behaviour in a marine insect: the trafalgar effect. Anim Behav 29(3):911–917. doi:10.1016/s0003-3472(81)80028-0 Google Scholar
  141. Tunstrøm K, Katz Y, Ioannou CC, Huepe C, Lutz MJ, Couzin ID (2013) Collective states, multistability and transitional behavior in schooling fish. PLoS Comp Biol 9:e1002915Google Scholar
  142. Turner GF, Pitcher TJ (1986) Attack abatement - A model for group protection by combined avoidance and dilution. Am Nat 128(2):228–240. doi:10.1086/284556 Google Scholar
  143. Vabø R, Nøttestad L (1997) An individual based model of fish school reactions: predicting antipredator behaviour as observed in nature. Fish Oceanogr 6(3):155–171. doi:10.1046/j.1365-2419.1997.00037.x Google Scholar
  144. Vabø R, Skaret G (2008) Emerging school structures and collective dynamics in spawning herring: a simulation study. Ecol Model 214(2–4):125–140. doi:10.1016/j.ecolmodel.2008.01.026 Google Scholar
  145. Vine I (1971) Risk of visual detection and pursuit by a predator and the selective advantage of flocking behaviour. J Theor Biol 30(2):405–422. doi:10.1016/0022-5193(71)90061-0 PubMedGoogle Scholar
  146. Viscido SV, Miller M, Wethey DS (2002) The dilemma of the selfish herd: the search for a realistic movement rule. J Theor Biol 217(2):183–194. doi:10.1006/jtbi.2002.3025 PubMedGoogle Scholar
  147. Viscido SV, Parrish JK, Grünbaum D (2005) The effect of population size and number of influential neighbors on the emergent properties of fish schools. Ecol Model 183(2–3):347–363. doi:10.1016/j.ecolmodel.2004.08.019 Google Scholar
  148. Viscido SV, Parrish JK, Grünbaum D (2007) Factors influencing the structure and maintenance of fish schools. Ecol Model 206(1–2):153–165. doi:10.1016/j.ecolmodel.2007.03.042 Google Scholar
  149. Weihs D (1973) Hydromechanics of fish schooling. Nature 241(5387):290–291Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guillaume Rieucau
    • 1
  • Anders Fernö
    • 2
  • Christos C. Ioannou
    • 3
  • Nils Olav Handegard
    • 1
  1. 1.Institute of Marine ResearchNordnes, BergenNorway
  2. 2.Department of BiologyUniversity of BergenBergenNorway
  3. 3.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations