Reviews in Fish Biology and Fisheries

, Volume 24, Issue 3, pp 757–780 | Cite as

Comparative estuarine and marine migration ecology of Atlantic salmon and steelhead: blue highways and open plains

  • Sean A. HayesEmail author
  • John F. Kocik
Research paper


This synthesis focuses on the estuarine and ocean ecology of Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss) across their southern ranges in North America. General life history and ecology share many common traits including iteroparity, duration of freshwater (0–3 years) and marine (2–5 years) rearing, ocean emigration at relatively large sizes and strong surface orientation compared to other salmonids. Despite parallels in life history and anthropogenic pressures, several differences emerged for these species. First, steelhead have greater life history diversity and a broader geographic distribution. Generally, estuary habitats serve as short-term migration corridors for both species. However, some steelhead populations used lagoon habitat in south-coast watersheds. While both species are epipelagic, Atlantic salmon exhibit more vertical migration. Atlantic salmon tend to follow migratory highways—relatively narrow bands along the coastal shelf, then crossing the Atlantic to feed inshore and in fjords of West Greenland. Conversely, steelhead exit the coastal shelf quickly, dispersing across the Pacific, and rarely use coastal environments. Despite inhabiting rivers in warm dry Mediterranean climates, the extended range and stability of southern steelhead distribution is likely buffered by cool upwelled waters of the California Current. Whereas Atlantic salmon populations are restricted by warmer Northwest Atlantic circulation patterns lacking cool upwelling with greater susceptibility to warming associated with climate change. Determining the rate of marine habitat changes in the Atlantic and Pacific Oceans is important to the conservation of these species, including subtleties of temporal and spatial habitat use, and adaptability to ocean ecosystems under climate change.


Atlantic salmon Steelhead Estuary Marine habitat Pacific Ocean Atlantic Ocean Climate change 



Thanks to Christa Woodley, Tim Sheehan, Dan Hassleman, and Will Satterthwaite for their thoughtful and expedient reviews. Thanks to Charleen Gavette and David Huff for producing maps for this project. We also thank the anonymous reviewers and editors whose comments strengthened and clarified this paper.


  1. Abdul-Aziz OI, Mantua NJ, Myers KW (2011) Potential climate change impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean and adjacent seas. Can J Fish Aquat Sci 68(9):1660–1680. doi: 10.1139/f2011-079 CrossRefGoogle Scholar
  2. Amiro PG (1998) The abundance of harp seals in the north Atlantic and recruitment of the north American stock of atlantic Salmon, Salmo Salar. Fisheries and Oceans Canada, Canadian Stock Assessment Secretariat, CanadaGoogle Scholar
  3. Anderson JJ, Gurarie E, Bracis C, Burke BJ, Laidre KL (2013) Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol Model 264:83–97. doi: 10.1016/j.ecolmodel.2013.03.009 CrossRefGoogle Scholar
  4. Antolos M, Roby DD, Collis K (2004) Breeding ecology of caspian terns at colonies on the Columbia Plateau. Northwest Sci 78(4):303–312Google Scholar
  5. Antolos M, Roby DD, Lyons DE, Collis K, Evans AF, Hawbecker M, Ryan BA (2005) Caspian tern predation on juvenile salmonids in the mid-Columbia River. Trans Am Fish Soc 134(2):466–480CrossRefGoogle Scholar
  6. Atcheson ME, Myers KW, Beauchamp DA, Mantua NJ (2012a) Bioenergetic response by steelhead to variation in diet, thermal habitat, and climate in the North Pacific Ocean. Trans Am Fish Soc 141(4):1081–1096. doi: 10.1080/00028487.2012.675914 CrossRefGoogle Scholar
  7. Atcheson ME, Myers KW, Davis ND, Mantua NJ (2012b) Potential trophodynamic and environmental drivers of steelhead (Oncorhynchus mykiss) productivity in the North Pacific Ocean. Fish Oceanogr. doi: 10.1111/j.1365-2419.2012.00627.x
  8. Atkinson KA (2010) Abundance and growth of steelhead (Oncorhynchus mykiss) in a California lagoon. M.Sc., San Jose State UniversityGoogle Scholar
  9. Audzijonyte A, Kuparinen A, Gorton R, Fulton EA (2013) Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact. Biol Lett 9(2). doi: 10.1098/rsbl.2012.1103
  10. Aydin KY, McFarlane GA, King JR, Megrey BA (2003) The BASS/MODEL report on trophic models of the subarctic pacific basin ecosystems. PICES Sci Rep 25:93Google Scholar
  11. Baum ET (1997) Maine Atlantic salmon: a national treasure. Atlantic Salmon Unlimited, Hermon, MaineGoogle Scholar
  12. Belding DL, Kitson JA (1934) Spring-run and fall-run Atlantic salmon. Trans Am Fish Soc 64(1):225–230CrossRefGoogle Scholar
  13. Blackwell BF, Krohn WB (1997) Spring foraging distribution and habitat selection by double-crested cormorants on the Penobscot River, Maine USA. Colon Waterbirds 20(1):66–76. doi: 10.2307/1521765 CrossRefGoogle Scholar
  14. Blackwell BF, Krohn WB, Dube NR, Godin AJ (1997) Spring prey use by double-crested cormorants on the Penobscot River, Maine, USA. Colon Waterbirds 20(1):77–86. doi: 10.2307/1521766 CrossRefGoogle Scholar
  15. Bley PW, Moring JR (1988) Freshwater and ocean survival of Altantic salmon and steelhead: a synopsis. US Fish Wildl Serv Biol Rep 88(9):22Google Scholar
  16. Bond MH, Hayes SA, Hanson CV, MacFarlane RB (2008) Marine survival of steelhead (Oncorhynchus mykiss) enhanced by a seasonally closed estuary. Can J Fish Aquat Sci 65(10):2242–2252. doi: 10.1139/F08-131 CrossRefGoogle Scholar
  17. Booker DJ, Wells NC, Smith IP (2008) Modelling the trajectories of migrating Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 65(3):352–361CrossRefGoogle Scholar
  18. Bryan FO, Hecht MW, Smith RD (2007) Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: the western boundary current system. Ocean Model 16(3–4):141–159. doi: 10.1016/j.ocemod.2006.08.005 CrossRefGoogle Scholar
  19. Burgner RL, Light JT, Margolis L, Okazaki T, Tautz A, Ito S (1992) Distribution and origins of steelhead trout Oncorhynchus mykiss in offshore waters of the North Pacific Ocean. Int N Pac Fish Comm Bull 51:1–92Google Scholar
  20. Burke BJ, Liermann MC, Teel DJ, Anderson JJ (2013) Environmental and geospatial factors drive juvenile Chinook salmon distribution during early ocean migration. Can J Fish Aquat Sci 70(8):1167–1177. doi: 10.1139/cjfas-2012-0505 CrossRefGoogle Scholar
  21. Busby PJ, Wainwright TC, Bryant GJ, Lierheimer LJ, Waples RS, Waknitz FW, Lagomarsino IV (1996) Status review of west coast steelhead from Washington, Idaho, Oregon, and California. NOAA Technical Memorandums NMFS-NWFSC-27, p 275.
  22. Byron CJ, Burke BJ (2014) Salmon ocean migration models suggest a variety of population-specific strategies. Rev Fish Biol Fish. doi: 10.1007/s11160-014-9343-0
  23. Byron CJ, Pershing AJ, Stockwell JD, Xue H, Kocik J (2014) Migration model of post-smolt Atlantic salmon (Salmo salar) in the Gulf of Maine. Fish Oceanogr 23(2):172–189CrossRefGoogle Scholar
  24. Carretta JV, Forney KA, Lowry MS, Barlow J, Baker J, Johnston D, Hanson B, Jr. RLB, Robbins J, Mattila DK, Ralls K, Muto MM, Lynch D, Carswell L (2010) U.S. Pacific marine mammal stock assessments: 2009. Technical Memorandum NMFS-SWFSC-453, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, La Jolla, CA, USAGoogle Scholar
  25. Chapman E, Hearn A, Michel C, Ammann A, Lindley S, Thomas M, Sandstrom P, Singer G, Peterson M, MacFarlane R, Klimley A (2012) Diel movements of out-migrating Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts in the Sacramento/San Joaquin watershed. Environ Biol Fish 1–14. doi: 10.1007/s10641-012-0001-x
  26. Chaput G, Legault CM, Reddin DG, Caron F, Amiro PG (2005) Provision of catch advice taking account of non-stationarity in productivity of Atlantic salmon (Salmo salar L.) in the Northwest Atlantic. ICES J Mar Sci 62(1):131–143. doi: 10.1016/j.icesjms.2004.10.006 CrossRefGoogle Scholar
  27. Crozier LG, Hendry AP, Lawson PW, Quinn TP, Mantua NJ, Battin J, Shaw RG, Huey RB (2008) Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evol Appl 1(2):252–270PubMedCentralCrossRefGoogle Scholar
  28. Cunjak RA (1992) Comparative feeding, growth and movements of Atlantic salmon (Salmo salar) parr from riverine and estuarine environments. Ecol Freshw Fish 1(1):26–34CrossRefGoogle Scholar
  29. Cunjak RA, Chadwick EMP, Shears M (1989) Downstream movements and estuarine residence by Atlantic Salmon Parr (Salmo salar). Can J Fish Aquat Sci 46(9):1466–1471. doi: 10.1139/F89-187 CrossRefGoogle Scholar
  30. Dalton CM, Ellis D, Post DM (2009) The impact of double-crested cormorant (Phalacrocorax auritus) predation on anadromous alewife (Alosa pseudoharengus) in south-central Connecticut, USA. Can J Fish Aquat Sci 66(2):177–186. doi: 10.1139/F08-198 CrossRefGoogle Scholar
  31. Daly EA, Scheurer JA, Brodeur RD, Weitkamp LA, Beckman BR, Miller JA (2014) Juvenile steelhead distribution, migration, growth and feeding in the Columbia River estuary, plume and coastal waters. Mar Coast Fish. doi: 10.1080/19425120.2013.869284
  32. Del Real SC, Workman M, Merz J (2012) Migration characteristics of hatchery and natural-origin Oncorhynchus mykiss from the lower Mokelumne River, California. Environ Biol Fish 94(2):363–375. doi: 10.1007/s10641-011-9967-z CrossRefGoogle Scholar
  33. Dempson JB, Robertson MJ, Pennell CJ, Furey G, Bloom M, Shears M, Ollerhead LMN, Clarke KD, Hinks R, Robertson GJ (2011) Residency time, migration route and survival of Atlantic salmon Salmo salar smolts in a Canadian fjord. J Fish Biol 78(7):1976–1992. doi: 10.1111/j.1095-8649.2011.02971.x PubMedCrossRefGoogle Scholar
  34. Engle VD, Kurtz JC, Smith LM, Chancy C, Bourgeois P (2007) A classification of U.S. estuaries based on physical and hydrologic attributes. Environ Monit Assess 129(1):397–412PubMedCrossRefGoogle Scholar
  35. Evans AF, Hostetter NJ, Roby DD, Collis K, Lyons DE, Sandford BP, Ledgerwood RD, Sebring S (2012) Systemwide evaluation of avian predation on juvenile salmonids from the Columbia River based on recoveries of passive integrated transponder tags. Trans Am Fish Soc 141(4):975–989. doi: 10.1080/00028487.2012.676809 CrossRefGoogle Scholar
  36. FAO (2013) Cultured aquatic species information programme Oncorhynchus mykiss. Cultured aquatic species information programme. In: FFaAD (ed) FAO Fisheries and aquaculture department (online), Rome, ItalyGoogle Scholar
  37. Farrell AP, Hinch SG, Cooke SJ, Patterson DA, Crossin GT ML, Mathes MT (2008) Pacific salmon in hot water: applying aerobic scope models and biotelemetry to predict the success of spawning migrations. Physiol Biochem Zool 81(6):697–708PubMedCrossRefGoogle Scholar
  38. Fay C, Bartron M, Craig S, Hecht A, Pruden J, Saunders R, Sheehan T, Trial J (2006) Status review for anadromous atlantic salmon (Salmo salar) in the United States. Report to the National Marine Fisheries Service and U.S. Fish and Wildlife ServiceGoogle Scholar
  39. Fisher JP, Pearcy WG (1994) Interannual trends in steelhead abundance and in ocean conditions. Report prepared for the Association of O and C Counties, under sub-contract to S. P. Cramer and Associates, Gresham, Oregon.
  40. Frechette DM, Collins AL, Harvey JT, Hayes SA, Huff DD, Jones AW, Langford AE, Moore JW, Osterback AK, Retford NA, Satterthwaite WH, Shaffer SA (2013) A bioenergetics approach to assessing potential impacts of avian predation on juvenile steelhead (Oncorhyncus mykiss) during freshwater rearing. N Am J Fish Manage 33(5):1024–1038CrossRefGoogle Scholar
  41. Fried SM, McCleave JD, LaBar GW (1978) Seaward migration of hatchery-reared Atlantic salmon, Salmo salar, smolts in the Penobscot River estuary, Maine: riverine movements. J Fish Res Board Can 35:76–86CrossRefGoogle Scholar
  42. Friedland KD, Reddin DG, Kocik JF (1993) The production of North American and European Atlantic salmon: effects of post-smolt growth and ocean environment. ICES, Copenhagen (Denmark)Google Scholar
  43. Friedland KD, Reddin DG, Castonguay M (2003a) Ocean thermal conditions in the post-smolt nursery of North American Atlantic salmon. ICES J Mar Sci 60(2):343–355. doi: 10.1016/S1054-3139(03)00022-5 CrossRefGoogle Scholar
  44. Friedland KD, Reddin DG, McMenemy JR, Drinkwater KF (2003b) Multidecadal trends in North American Atlantic salmon (Salmo salar) stocks and climate trends relevant to juvenile survival. Can J Fish Aquat Sci 60(5):563–583. doi: 10.1139/F03-047 CrossRefGoogle Scholar
  45. Friedland KD, MacLean JC, Hansen LP, Peyronnet AJ, Karlsson L, Reddin DG, Maoileidigh NO, McCarthy JL (2009) The recruitment of Atlantic salmon in Europe. ICES J Mar Sci 66(2):289–304. doi: 10.1093/icesjms/fsn210 CrossRefGoogle Scholar
  46. Friedland KD, Manning JP, Link JS, Gilbert JR, Gilbert AT, O’Connell AF (2012) Variation in wind and piscivorous predator fields affecting the survival of Atlantic salmon, Salmo salar, in the Gulf of Maine. Fish Manage Ecol 19(1):22–35. doi: 10.1111/j.1365-2400.2011.00814.x CrossRefGoogle Scholar
  47. Friedland KD, Shank BV, Todd CD, McGinnity P, Nye JA (2013) Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic multidecadal oscillation. J Mar Syst. doi: 10.1016/j.jmarsys.2013.03.003
  48. Friedland KD, Ward BR, Welch DW, Hayes SA (2014) The effects of post-smolt growth and thermal regime on the marine survival of steelhead trout (Oncorhynchus mykiss) from the Keogh River, British Columbia. Mar Coast Fish 6(1):1–11Google Scholar
  49. Gargett AE (1997) The optimal stability `window’: a mechanism underlying decadal fluctuations in North Pacific salmon stocks? Fish Oceanogr 6(2):109–117. doi: 10.1046/j.1365-2419.1997.00033.x CrossRefGoogle Scholar
  50. Gill RE, Medwaldt LR (1983) Pacific coast Caspian tern: dynamics of an expanding population. Auk 100(2):369–381Google Scholar
  51. Gjedrem T (2000) Genetic improvement of cold-water fish species. Aquac Res 31(1):25–33CrossRefGoogle Scholar
  52. Greene JK, Anderson MG, Odell J, Steinberg N (2010) The Northwest Atlantic marine ecoregional assessment: species, habitats and ecosystems. Phase one. The Nature Conservancy, Eastern U.S. Division, Boston, MAGoogle Scholar
  53. Haeseker SL, McCann JA, Tuomikoski J, Chockley B (2012) Assessing freshwater and marine environmental influences on life-stage-specific survival rates of Snake River spring-summer Chinook salmon and steelhead. Trans Am Fish Soc 141(1):121–138. doi: 10.1080/00028487.2011.652009 CrossRefGoogle Scholar
  54. Handeland SO, Bjornsson BT, Arnesen AM, Stefansson SO (2003a) Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains. Aquaculture 220(1–4):367–384. doi: 10.1016/S0044-8486(02)00508-2 CrossRefGoogle Scholar
  55. Handeland SO, Porter M, Bjornsson BT, Stefansson SO (2003b) Osmoregulation and growth in a wild and a selected strain of Atlantic salmon smolts on two photoperiod regimes. Aquaculture 222(1–4):29–43. doi: 10.1016/S0044-8486(03)00100-5 CrossRefGoogle Scholar
  56. Hansen LP, Quinn TR (1998) The marine phase of the Atlantic salmon (Salmo salar) life cycle, with comparisons to Pacific salmon. Can J Fish Aquat Sci 55:104–118. doi: 10.1139/cjfas-55-S1-104 CrossRefGoogle Scholar
  57. Hansen LP, Hutchinson P, Reddin DG, Windsor ML (2012) Salmon at sea: scientific advances and their implications for management: an introduction. ICES J Mar Sci 69(9):1533–1537. doi: 10.1093/icesjms/fss146 CrossRefGoogle Scholar
  58. Hartt AC, Dell MB (1986) Early oceanic migrations and growth of juvenile Pacific salmon and steelhead trout, vol 46. International North Pacific Fisheries Commission, VancouverGoogle Scholar
  59. Hawkes JP, Saunders R, Vashon AD, Cooperman MS (2013) Assessing efficacy of non-lethal harassment of double-crested cormorants to improve Atlantic salmon smolt survival. Northeast Nat 20(1):1–18CrossRefGoogle Scholar
  60. Hayes SA, Bond MH, Hanson CV, Freund EV, Smith JJ, Anderson EC, Ammann A, MacFarlane RB (2008) Steelhead growth in a small central California watershed: upstream and estuarine rearing patterns. Trans Am Fish Soc 137:114–128. doi: 10.1577/T07-043.1 CrossRefGoogle Scholar
  61. Hayes SA, Bond MH, Hanson CV, Jones AW, Ammann AJ, Harding JA, Collins AL, Perez J, MacFarlane RB (2011) Down, up, down and “smolting” twice? Seasonal movement patterns by juvenile steelhead (Oncorhynchus mykiss) in a coastal watershed with a bar closing estuary. Can J Fish Aquat Sci 68(8):1341–1350. doi: 10.1139/F2011-062 CrossRefGoogle Scholar
  62. Hayes SA, Bond MH, Wells BK, Hanson CV, Jones AW, MacFarlane RB (2012a) Using archival tags to infer habitat use of Central California steelhead and coho salmon. In: Parsons B et al (eds) Proceedings of the 2nd international symposium on advances in fish tagging and marking technology, vol 76. American Fisheries Society, USA, pp 471–492Google Scholar
  63. Hayes SA, Hanson CV, Bond MH, Pearse D, Garza JC, MacFarlane RB (2012b) Should I stay or should I go? The influence of genetic origin on emigration behavior and physiology by resident and anadromous juvenile Oncorhynchus mykiss. N Am J Fish Manage 32(4):772–780CrossRefGoogle Scholar
  64. High B, Peery CA, Bennett DH (2006) Temporary staging of Columbia River summer steelhead in coolwater areas and its effect on migration rates. Trans Am Fish Soc 135(2):519–528. doi: 10.1577/T04-224.1 CrossRefGoogle Scholar
  65. Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12(2):197–229.
  66. Horton GE, Letcher BH, Bailey MM, Kinnison MT (2009) Atlantic salmon (Salmo salar) smolt production: the relative importance of survival and body growth. Can J Fish Aquat Sci 66(3):471–483. doi: 10.1139/F09-005 CrossRefGoogle Scholar
  67. Hostetter NJ, Evans AF, Roby DD, Collis K (2012) Susceptibility of juvenile steelhead to avian predation: the influence of individual fish characteristics and river conditions. Trans Am Fish Soc 141(6):1586–1599. doi: 10.1080/00028487.2012.716011 CrossRefGoogle Scholar
  68. Huntington TG, Hodgkins GA, Dudley RW (2003) Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine. Clim Change 61(1–2):217–236. doi: 10.1023/A:1026360615401 CrossRefGoogle Scholar
  69. ICES (2013) Report of the Working Group on North Atlantic Salmon (WGNAS) ICES CM 2012/ACOM:09, vol 26. Copenhagen, Denmark, p 323Google Scholar
  70. Jones AW, Dalton CM, Stowe ES, Post DM (2010) Contribution of declining anadromous fishes to the reproductive investment of a common piscivorous seabird, the double-crested cormorant (Phalacrocorax auritus). Auk 127(3):696–703. doi: 10.1525/auk.2010.09200 CrossRefGoogle Scholar
  71. Kennedy RJ, Crozier WW (2010) Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, and possible associations with climate change. J Fish Biol 76(7):1786–1805. doi: 10.1111/j.1095-8649.2010.02617.x PubMedCrossRefGoogle Scholar
  72. Kocik JF, Brown RW (2001) From game fish to tame fish: atlantic salmon in North America, 1798 to 1998. In: Jones ML, Lynch KD, Taylor WW (eds) Sustainability of salmon fisheries: binational perspectives, vol 32. United States—American Fisheries Society Symposium 3, pp 1–29Google Scholar
  73. Kocik JF, Hawkes JP, Sheehan TF, Music PA, Beland KF (2009) Assessing estuarine and coastal migration and survival of wild Atlantic salmon smolts from the Narraguagus River, Maine using ultrasonic telemetry. In: Haro A et al (eds) Challenges for diadromous fishes in a dynamic global environment. American Fisheries Society, Bethesda, pp 293–310Google Scholar
  74. Koehler J, Blank P (2011) Napa River steelhead and salmon smolt monitoring program. Napa County Resources Conservation District.
  75. LaBar GW, McCleave JD, Fried SM (1978) Seaward migration of hatchery-reared Atlantic salmon (Salmo salar) smolts in the Penobscot River estuary, Maine: open-water movements. ICES J Mar Sci 38(2):257–269CrossRefGoogle Scholar
  76. Lacroix GL (2008) Influence of origin on migration and survival of Atlantic salmon (Salmo salar) in the Bay of Fundy, Canada. Can J Fish Aquat Sci 65(9):2063–2079. doi: 10.1139/F08-119 CrossRefGoogle Scholar
  77. Lacroix GL (2013a) Migratory strategies of Atlantic salmon (Salmo salar) postsmolts and implications for marine survival of endangered populations. Can J Fish Aquat Sci 70(1):32–48. doi: 10.1139/cjfas-2012-0270 CrossRefGoogle Scholar
  78. Lacroix GL (2013b) Population-specific ranges of oceanic migration for adult Atlantic salmon (Salmo salar) documented using pop-up satellite archival tags. Can J Fish Aquat Sci 70(7):1011–1030. doi: 10.1139/cjfas-2013-0038 CrossRefGoogle Scholar
  79. Lacroix GL, Knox D (2005) Distribution of Atlantic salmon (Salmo salar) postsmolts of different origins in the Bay of Fundy and Gulf of Maine and evaluation of factors affecting migration, growth, and survival. Can J Fish Aquat Sci 62(6):1363–1376. doi: 10.1139/F05-055 CrossRefGoogle Scholar
  80. Lacroix GL, McCurdy P (1996) Migratory behaviour of post-smolt Atlantic salmon during initial stages of seaward migration. J Fish Biol 49(6):1086–1101CrossRefGoogle Scholar
  81. Lacroix GL, Knox D, Sheehan TF, Renkawitz MD, Bartron ML (2012) Distribution of U.S. Atlantic salmon postsmolts in the Gulf of Maine. Trans Am Fish Soc 141(4):934–942. doi: 10.1080/00028487.2012.675915 CrossRefGoogle Scholar
  82. Largier JL, Taljaard S (1991) The dynamics of tidal intrusion, retention, and removal of seawater in a bar-built estuary. Estuar Coast Shelf Sci 33(4):325–338CrossRefGoogle Scholar
  83. Light JT, Harris CK, Burgner RL (1989) Ocean distribution and migration of steelhead (Oncorhynchus mykiss, formerly Salmo gairdneri). International North Pacific Fisheries Commission Document, FRI-UW-8912, Fisheries Research Institute, University of Washington, Seattle. (July 2012)
  84. Maccrimmon HR (1971) World distribution of rainbow trout (Salmo gairdneri). J Fish Res Board Can 28(5):663–704CrossRefGoogle Scholar
  85. Maccrimmon HR (1972) World distribution of rainbow trout (Salmo gairdneri): further observations. J Fish Res Board Can 29(12):1788–1791CrossRefGoogle Scholar
  86. Maccrimmon HR (1979) World distribution of Atlantic salmon, Salmo salar. J Fish Res Board Can 36(4):422–457CrossRefGoogle Scholar
  87. Manning DJ, Lamb JM (2012) Russian River biological opinion status and data report year 2011–2012. Sonoma County Water Agency, Santa Rosa, CA, p 208.
  88. Mantua N, Tohver I, Hamlet A (2010) Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim Change 102(1–2):187–223. doi: 10.1007/s10584-010-9845-2 CrossRefGoogle Scholar
  89. McCleave JD (1978) Rhythmic aspects of estuarine migration of hatchery-reared Atlantic salmon (Salmo salar) smolts. J Fish Biol 12(6):559–570. doi: 10.1111/j.1095-8649.1978.tb04202.x CrossRefGoogle Scholar
  90. McCormick SD, Hansen LP, Quinn TP, Saunders RL (1998) Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55(Suppl 1):77–92CrossRefGoogle Scholar
  91. McCormick SD, Sheehan TF, Bjornsson BT, Lipsky C, Kocik JF, Regish AM, O’Dea MF (2013) Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration, and ocean entry. Can J Fish Aquat Sci 70(1):105–118. doi: 10.1139/cjfas-2012-0151 CrossRefGoogle Scholar
  92. McElhany P, Ruckleshaus MH, Ford MJ, Wainwright TC, Bjorrkstedt EP (2000) Viable salmonid populations and the recovery of evolutionary significant units. NOAA, p 156Google Scholar
  93. McEwan D (2001) Central valley steelhead. Fish Bull (Cal DFG) 179(1):1–43Google Scholar
  94. McKinnell S, Pella JJ, Dahlberg ML (1997) Population-specific aggregations of steelhead trout (Oncorhynchus mykiss) in the North Pacific Ocean. Can J Fish Aquat Sci 54(10):2368–2376CrossRefGoogle Scholar
  95. McMichael GA, Harnish RA, Skalski JR, Deters KA, Ham KD, Townsend RL, Titzler PS, Hughes MS, Kim J, Trott DM (2011) Migratory behavior and survival of juvenile salmonids in the lower Columbia River, estuary, and plume in 2010. PNNL-20443, Pacific Northwest National Laboratory, Richland, Washington, p 170Google Scholar
  96. Meister AL (1962) Atlantic salmon production in Cove Brook, Maine. Trans Am Fish Soc 91(2):208–212CrossRefGoogle Scholar
  97. Meister AL (1984) The marine migrations of tagged Atlantic salmon (Salmo salar L.) of USA origin. ICES Document CM 1984/M:27Google Scholar
  98. Melnychuk MC (2009) Estimation of survival and detection probabilities for multiple tagged salmon stocks with nested migration routes, using a large-scale telemetry array. Mar Freshw Res 60:1231–1243CrossRefGoogle Scholar
  99. Melnychuk MC, Walters CJ (2010) Estimating detection probabilities of tagged fish migrating past fixed receiver stations using only local information. Can J Fish Aquat Sci 67(4):641–658CrossRefGoogle Scholar
  100. Melnychuk M, Welch D, Walters C, Christensen V (2007) Riverine and early ocean migration and mortality patterns of juvenile steelhead trout (Oncorhynchus mykiss) from the Cheakamus River, British Columbia. In: Almeida P, Quintella B, Costa M, Moore A (eds) Developments in fish telemetry. Developments in hydrobiology 195, vol 195. Springer, The Netherlands, pp 55–65Google Scholar
  101. Melnychuk MC, Welch DW, Walters CJ (2010) Spatio-temporal migration patterns of pacific salmon smolts in rivers and coastal marine waters. PLoS One 5(9):e12916PubMedCentralPubMedCrossRefGoogle Scholar
  102. Melnychuk MC, Christensen V, Walters CJ (2012) Meso-scale movement and mortality patterns of juvenile coho salmon and steelhead trout migrating through a coastal fjord. Environ Biol Fish. doi: 10.1007/s10641-012-9976-6
  103. Miller BA, Sadro S (2003) Residence time and seasonal movements of juvenile coho salmon in the ecotone and lower estuary of Winchester Creek, South Slough, Oregon. Trans Am Fish Soc 132(3):546–559Google Scholar
  104. Miller AS, Sheehan TF, Renkawitz MD, Meister AL, Miller TJ (2012a) Revisiting the marine migration of US Atlantic salmon using historical Carlin tag data. ICES J Mar Sci 69(9):1609–1615. doi: 10.1093/icesjms/fss039 CrossRefGoogle Scholar
  105. Miller AS, Sheehan TF, Spencer RC, Renkawitz MD, Friedland KD, Meister AL (2012b) Description of the historic US Atlantic salmon (Salmo salar L.) tagging programs and subsequent databases, vol 12. US Department Commerce, Northeast Fisheries Science Center, Woods Hole, MA, p 49Google Scholar
  106. Mills D (2000) The ocean life of Atlantic salmon: environmental and biological factors influencing survival. Fishing News Books Oxford, UKGoogle Scholar
  107. Mills KE, Pershing AJ, Sheehan TF, Mountain D (2013) Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations. Glob Change Biol 19(10):3046–3061. doi: 10.1111/Gcb.12298 CrossRefGoogle Scholar
  108. Moore ME, Berejikian BA, Tezak EP (2010) Early marine survival and behavior of steelhead smolts through hood canal and the strait of juan de fuca. Trans Am Fish Soc 139(1):49–61. doi: 10.1577/T09-012.1 CrossRefGoogle Scholar
  109. Mork KA, Gilbey J, Hansen LP, Jensen AJ, Jacobsen JA, Holm M, Holst JC, Maoiléidigh ÓN, Vikebø F, McGinnity P, Melle W, Thomas K, Verspoor E, Wennevik V (2012) Modelling the migration of post-smolt Atlantic salmon (Salmo salar) in the Northeast Atlantic. ICES J Mar Sci J Conseil 69(9):1616–1624. doi: 10.1093/icesjms/fss108 CrossRefGoogle Scholar
  110. Myers KW (in press) Ocean life history of steelhead north Pacific anadromous fish commissionGoogle Scholar
  111. Myers KW, Aydin KY, Walker RV, Fowler S, Dahlberg ML (1996) Known ocean ranges of stocks of Pacific salmon and steelhead as shown by tagging experiments, 1956–1995. North Pacific Anadromous Fish Commission Doc 192, University of Washington, Seattle, WAGoogle Scholar
  112. Myers JM, Kope RG, Bryant GJ, Teel D, Lierheimer LJ, Wainwright TC, Grant WSW, William Waknitz F, Neely KL, Lindley ST, Waples RS (1998) Status review of Chinook Salmon from Washington, Idaho, Oregon and California. U.S. Department of Commerce NOAA Tech. Memo NMFS-NWFSC-35, p 443Google Scholar
  113. Myers K, Davis N, Celewycz A, Farley EJ, Morris J, Trudel M, Fukuwaka M-A, Kovalenko S, Shubin A (2005) High seas salmonid coded-wire tag recovery data, 2005. School of Aquatic and Fishery Science, Fisheries Research Institute, Washington University, WashingtonGoogle Scholar
  114. Nielsen JL, Turner SM, Zimmerman CE (2011) Electronic tags and genetics explore variation in migrating steelhead kelts (Oncorhynchus mykiss), Ninilchik River, Alaska. Can J Fish Aquat Sci 68(1):1–16. doi: 10.1139/F10-124 CrossRefGoogle Scholar
  115. Null RE, Niemela KS, Hamelberg SF (2012) Post-spawn migrations of hatchery-origin Oncorhynchus mykiss kelts in the Central Valley of California. Environ Biol Fish. doi: 10.1007/s10641-012-0075-5
  116. Osterback A-MK, Frechette DM, Shelton AO, Hayes SA, Bond MH, Shaffer SA, Moore JW (2013) High predation on small populations: avian predation on imperiled salmonids. Ecosphere 4(9):116. doi: 10.1890/ES13-00100.1 CrossRefGoogle Scholar
  117. Otero J, L’Abee-Lund JH, Castro-Santos T, Leonardsson K, Storvik GO, Jonsson B, Dempson B, Russell IC, Jensen AJ, Bagliniere JL, Dionne M, Armstrong JD, Romakkaniemi A, Letcher BH, Kocik JF, Erkinaro J, Poole R, Rogan G, Lundqvist H, MacLean JC, Jokikokko E, Arnekleiv JV, Kennedy RJ, Niemela E, Caballero P, Music PA, Antonsson T, Gudjonsson S, Veselov AE, Lamberg A, Groom S, Taylor BH, Taberner M, Dillane M, Arnason F, Horton G, Hvidsten NA, Jonsson IR, Jonsson N, McKelvey S, Naesje TF, Skaala O, Smith GW, Saegrov H, Stenseth NC, Vollestad LA (2014) Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob Change Biol 20(1):61–75. doi: 10.1111/Gcb.12363 CrossRefGoogle Scholar
  118. Parrish DL, Behnke RJ, Gephard SR, McCormick SD, Reeves GH (1998) Why aren’t there more Atlantic salmon (Salmo salar)? Can J Fish Aquat Sci 55:281–287. doi: 10.1139/cjfas-55-S1-281 CrossRefGoogle Scholar
  119. Pearcy WG, Brodeur RD, Fisher JP (1990) Distribution and biology of juvenile cutthroat trout Oncorhynchus clarki clarki and steelhead O. mykiss in coastal waters off Oregon and Washington. Fish Bull 88(4):697–711Google Scholar
  120. Pershing AJ, Greene CH, Jossi JW, O’Brien L, Brodziak JKT, Bailey BA (2005) Interdecadal variability in the Gulf of Maine zooplankton community, with potential impacts on fish recruitment. ICES J Mar Sci 62(7):1511–1523. doi: 10.1016/j.icesjms.2005.04.025 CrossRefGoogle Scholar
  121. Petrosky CE, Schaller HA (2010) Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook salmon and steelhead. Ecol Freshw Fish 19(4):520–536. doi: 10.1111/j.1600-0633.2010.00425.x CrossRefGoogle Scholar
  122. Pinder AC, Riley WD, Ibbotson AT, Beaumont WRC (2007) Evidence for an autumn downstream migration and the subsequent estuarine residence of 0+ year juvenile Atlantic salmon Salmo salar L., in England. J Fish Biol 71(1):260–264. doi: 10.1111/j.1095-8649.2007.01470.x CrossRefGoogle Scholar
  123. Quinn TJ (2005) The behavior and ecology of Pacific salmon and trout. University of Washington Press, SeattleGoogle Scholar
  124. Quinn TP, Myers KW (2004) Anadromy and the marine migrations of Pacific salmon and trout: Rounsefell revisited. Rev Fish Biol Fish 14(4):421–442. doi: 10.1007/s11160-005-0802-5 CrossRefGoogle Scholar
  125. Randall RG, Power G (1979) Atlantic salmon (Salmo salar) of the Pigou and Bouleau rivers, Quebec. Environ Biol Fish 4(2):179–184CrossRefGoogle Scholar
  126. Reddin D (1985) Atlantic salmon (Salmo salar) on and east of the Grand Bank. J Northwest Atlantic Fish Sci 6:157–164CrossRefGoogle Scholar
  127. Reddin D, Shearer W (1987) Sea-surface temperature and distribution of Atlantic salmon in the Northwest Atlantic Ocean. In: American fisheries society symposium, vol 1, pp 262–275Google Scholar
  128. Reddin DG, Short PB (1991) Postsmolt Atlantic salmon (Salmo salar) in the Labrador Sea. Can J Fish Aquat Sci 48(1):2–6. doi: 10.1139/F91-001 CrossRefGoogle Scholar
  129. Reddin DG, Downton P, Friedland KD (2006) Diurnal and nocturnal temperatures for Atlantic salmon postsmolts (Salmo salar L.) during their early marine life. Fish Bull 104(3):415–428Google Scholar
  130. Reddin DG, Downton P, Fleming IA, Hansen LP, Mahon A (2011) Behavioural ecology at sea of Atlantic salmon (Salmo salar L.) kelts from a Newfoundland (Canada) river. Fish Oceanogr 20(3):174–191. doi: 10.1111/j.1365-2419.2011.00576.x CrossRefGoogle Scholar
  131. Renkawitz MD, Sheehan TF, Goulette GS (2012) Swimming depth, behavior, and survival of Atlantic salmon postsmolts in Penobscot Bay, Maine. Trans Am Fish Soc 141(5):1219–1229. doi: 10.1080/00028487.2012.688916 CrossRefGoogle Scholar
  132. Robards MD, Quinn TP (2002) The migratory timing of adult summer-run steelhead in the Columbia River over six decades of environmental change. Trans Am Fish Soc 131(3):523–536. doi: 10.1577/1548-8659(2002)131<0523:Tmtoas>2.0.Co;2 CrossRefGoogle Scholar
  133. Romer J, Leblanc C, Clements S, Ferguson J, Kent M, Noakes D, Schreck C (2012) Survival and behavior of juvenile steelhead trout (Oncorhynchus mykiss) in two estuaries in Oregon, USA. Environ Biol Fish 1–15. doi: 10.1007/s10641-012-0080-8
  134. Rounsefell GA (1958) Anadromy in North American Salmonidae. Fish Bull 58(131):171–185Google Scholar
  135. Royce WF, Smith LS, Hartt AC (1968) Models of oceanic migrations of Pacific salmon and comments on guidance mechanisms. Fisheries Research Institute, College of Fisheries, University of Washington, WashingtonGoogle Scholar
  136. Ruggerone GT, Quinn TP, Mcgregor IA, Wilkinson TD (1990) Horizontal and vertical movements of adult steelhead trout, Oncorhynchus mykiss, in the dean and fisher channels, British-Columbia. Can J Fish Aquat Sci 47(10):1963–1969. doi: 10.1139/F90-221 CrossRefGoogle Scholar
  137. Russell IC, Aprahamian MW, Barry J, Davidson IC, Fiske P, Ibbotson AT, Kennedy RJ, Maclean JC, Moore A, Otero J, Potter T, Todd CD (2012) The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival. ICES J Mar Sci J Conseil 69(9):1563–1573. doi: 10.1093/icesjms/fsr208 CrossRefGoogle Scholar
  138. Sandstrom PT (2013) Survival of juvenile steelhead trout using acoustic telemetry: a field and laboratory study. University of California, DavisGoogle Scholar
  139. Sandstrom P, Ammann A, Michel C, Singer G, Chapman E, Lindley S, MacFarlane R, Klimley A (2012) Growth, survival, and tag retention of steelhead trout (Oncorhynchus mykiss) and its application to survival estimates. Environ Biol Fish 1–20. doi: 10.1007/s10641-012-0051-0
  140. Saunders R, Hachey MA, Fay CW (2006) Maine’s diadromous fish community: past, present, and implications for Atlantic salmon recovery. Fisheries 31(11):537–547. doi: 10.1577/1548-8446(2006)31[537:Mdfc]2.0.Co;2 CrossRefGoogle Scholar
  141. Schwarz KM, Orme AR (2005) Opening and closure of a seasonal river mouth: The Malibu Estuary-Barrier-Lagoon system, California. Z Geomorphol Suppl 141:91–109Google Scholar
  142. Shapovalov L, Taft AC (1954) The life histories of the steelhead rainbow trout (Salmo gairdneri gairdneri) and silver salmon (Oncorhynchus kisutch). California Department of Fish and Game. Fisheries Bulletin, vol 98Google Scholar
  143. Sheehan TF, Legault CM, King TL, Spidle AP (2010) Probabilistic-based genetic assignment model: assignments to subcontinent of origin of the West Greenland Atlantic salmon harvest. ICES J Mar Sci 67(3):537–550. doi: 10.1093/icesjms/fsp247 CrossRefGoogle Scholar
  144. Sheehan TF, Renkawitz MD, Brown RW (2011) Surface trawl survey for U.S. origin Atlantic salmon Salmo salar. J Fish Biol 79(2):374–398. doi: 10.1111/j.1095-8649.2011.03025.x PubMedCrossRefGoogle Scholar
  145. Sheehan TF, Reddin DG, Chaput G, Renkawitz MD (2012) SALSEA North America: a pelagic ecosystem survey targeting Atlantic salmon in the Northwest Atlantic. ICES J Mar Sci J Conseil 69(9):1580–1588. doi: 10.1093/icesjms/fss052 CrossRefGoogle Scholar
  146. Smith GR, Stearley RF (1989) The classification and scientific names of rainbow and cutthroat trouts. Fisheries 14(1):4–10CrossRefGoogle Scholar
  147. Taylor EB, McPhail JD (1985) Variation in body morphology among British Columbia [Canada] populations of coho salmon, Oncorhynchus kisutch. Can J Fish Aquat Sci 42(12):2020–2028CrossRefGoogle Scholar
  148. Teo SL, Sandstrom PT, Chapman ED, Null R, Brown K, Klimley AP, Block BA (2011) Archival and acoustic tags reveal the post-spawning migrations, diving behavior, and thermal habitat of hatchery-raised Sacramento River steelhead kelts (Oncorhynchus mykiss). Environ Biol Fish. doi: 10.1007/s10641-011-9938-4
  149. Thomson K, Ingraham W, Healey M, LeBlond P, Groot C, Healey C (1992) The influence of ocean currents on latitude of landfall and migration speed of sockeye salmon returning to the Fraser River. Fish Oceanogr 1(2):163–179CrossRefGoogle Scholar
  150. Thorstad EB, Whoriskey F, Uglem I, Moore A, Rikardsen AH, Finstad B (2012) A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration. J Fish Biol 81(2):500–542. doi: 10.1111/j.1095-8649.2012.03370.x PubMedCrossRefGoogle Scholar
  151. Tucker S, Trudel M, Welch D, Candy J, Morris J, Thiess M, Wallace C, Beacham T (2012) Annual coastal migration of juvenile Chinook salmon: static stock-specific patterns in a highly dynamic ocean. Mar Ecol Prog Ser 449:245–262CrossRefGoogle Scholar
  152. USASAC (2013) United States Atlantic salmon assessment committee: annual report of the U.S. Atlantic Salmon Assessment Committee. Report 25—2012 Activities. Old Lyme, CT. USA.
  153. Utter FM, Allendorf FW (1994) Phylogenetic-relationships among species of Oncorhynchus—a consensus view. Conserv Biol 8(3):864–867. doi: 10.1046/j.1523-1739.1994.08030863-2.x CrossRefGoogle Scholar
  154. Verspoor E, O’sullivan M, Arnold A, Knox D, Amiro P (2002) Restricted matrilineal gene flow and regional differentiation among Atlantic salmon (Salmo salar L.) populations within the Bay of Fundy, eastern Canada. Heredity 89(6):465–472PubMedCrossRefGoogle Scholar
  155. Walker RV, Myers KW, Davis ND, Aydin KY, Friedland KD, Carlson HR, Boehlert GW, Urawa S, Ueno Y, Anma G (2000) Diurnal variation in thermal environment experienced by salmonids in the North Pacific as indicated by data storage tags. Fish Oceanogr 9(2):171–186CrossRefGoogle Scholar
  156. Walker RJ, Sviridov VV, Urawa S, Azumaya T (2007) Spatio-temporal variation in vertical distributions of Pacific salmon in the Ocean. N Pac Anadr Fish Comm Bull 4:193–201Google Scholar
  157. Ward BR (2000) Declivity in steelhead (Oncorhynchus mykiss) recruitment at the Keogh River over the past decade. Can J Fish Aquat Sci 57(2):298–306CrossRefGoogle Scholar
  158. Ward BR, Slaney PA (1988) Life history and smolt-to-adult survival of Keogh River steelhead trout (Salmo gairdneri) and the relationship to smolt size. Can J Fish Aquat Sci 45(7):1110–1122CrossRefGoogle Scholar
  159. Ward BR, Slaney PA, Facchin AR, Land RW (1989) Size-biased survival in steelhead trout (Oncorhynchus mykiss): back-calculated lengths from adults’ scales compared to migrating smolts at the Keogh River, British Columbia. Can J Fish Aquat Sci 46(11):1853–1858CrossRefGoogle Scholar
  160. Weitkamp LA, Bentley PJ, Litz MNC (2012) Seasonal and interannual variation in juvenile salmonids and associated fish assemblage in open waters of the lower Columbia River estuary. Fish Bull 110:426–450Google Scholar
  161. Weitkamp LA, Goulette GG, Hawkes J, O’Malley M, Lipsky C (2014) Juvenile salmon in estuaries: comparisons between North American Atlantic and Pacific salmon populations. Rev Fish Biol Fish. doi: 10.1007/s11160-014-9345-y
  162. Welch DW, Ward BR, Smith BD, Eveson JP (1998) Influence of the 1990 ocean climate shift on British Columbia steelhead (Oncorhynchus mykiss) and coho (O. kisutch) populations. In: Workshop on climate change and salmon production. Technical Report. North Pacific Anadromous Fish Commission Vancouver, British Columbia, CanadaGoogle Scholar
  163. Welch DW, Ward BR, Smith BD, Eveson JP (2000) Temporal and spatial responses of British Columbia steelhead (Oncorhynchus mykiss) populations to ocean climate shifts. Fish Oceanogr 9(1):17–32CrossRefGoogle Scholar
  164. Welch DW, Ward BR, Batten SD (2004) Early ocean survival and marine movements of hatchery and wild steelhead trout (Oncorhynchus mykiss) determined by an acoustic array: Queen Charlotte Strait, British Columbia. Deep Sea Res (Part II Top Stud Oceanogr) 51(6–9):897–909CrossRefGoogle Scholar
  165. Withler RE (1966) Variability in life history characteristics of steelhead trout (Salmo gairdneri) along the Pacific coast of North America. J Fish Res Board Can 23(3):365–393CrossRefGoogle Scholar
  166. Zydlewski GB, Haro A, McCormick SD (2005) Evidence for cumulative temperature as an initiating and terminating factor in downstream migratory behavior of Atlantic salmon (Salmo salar) smolts. Can J Fish Aquat Sci 62(1):68–78. doi: 10.1139/F04-179 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA)  2014

Authors and Affiliations

  1. 1.Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric Administration (NOAA)Santa CruzUSA
  2. 2.Resource Evaluation and Assessment Division, Northeast Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric Administration (NOAA)OronoUSA

Personalised recommendations