Advertisement

Reviews in Fish Biology and Fisheries

, Volume 24, Issue 1, pp 199–218 | Cite as

A review of detection range testing in aquatic passive acoustic telemetry studies

  • S. T. Kessel
  • S. J. Cooke
  • M. R. Heupel
  • N. E. Hussey
  • C. A. Simpfendorfer
  • S. Vagle
  • A. T. Fisk
Reviews

Abstract

Passive acoustic telemetry provides an important tool to study the spatial ecology and behaviour of organisms in marine and freshwater systems, but understanding the detection range of acoustic receivers is critical for interpreting acoustic data and establishing receiver spacing to maximize study efficiency. This study presents a comprehensive review of how acoustic detection range has been considered and assessed to date, summarizes important variables to monitor when determining the detection range of a receiver array, and provides recommendations to account for detection range during experimental design, analysis and data interpretation. A total of 378 passive acoustic telemetry studies (1986–2012) were scored against a set of pre-defined criteria to provide a standardized assessment of how well detection range was accounted for, from a maximum possible score of 45. Scores ranged from 0 to 39 (11.1 ± 0.4; mean ± 1 SE). Over the past decade mean scores have been consistently between 6.7 and 12.9 which indicates that detection range has not been adequately considered in most contemporary acoustic telemetry studies. Given the highly variable nature of detection range over space and time, it is necessary to create a culture of detection range testing among the scientific community. For robust telemetry studies it is recommended that consideration of detection range should be given a greater focus within study design, execution and data analysis. To aid array design in new systems, short-term detection range tests should be conducted in the most representative area of the study system prior to deployment. As well, fixed distance sentinel tags should ideally be deployed at a representative receiver site within the array to provide a continuous assessment of detection range and influential environmental parameters should be monitored to facilitate modeling of detection range variability over time. When warranted, data analysis should incorporate modeled variation in detection ranges.

Keywords

Acoustic telemetry Ultrasonic telemetry Passive telemetry Range test Detection range Animal movement 

Notes

Acknowledgments

Support for this project was provided by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Foundation for Innovation (International Joint Ventures Fund) through the Ocean Tracking Network to ATF, SV and SC. ATF and SC are supported by the Canada Research Chairs program. We would like to thank the editor and two anonymous reviewers for their constructive comments on the earlier draft of this manuscript, which improved the current version.

Supplementary material

11160_2013_9328_MOESM1_ESM.docx (64 kb)
Supplementary material 1 (DOCX 64 kb)

References

  1. Aarestrup K, Thorstad EB, Koed A, Svendsen JC, Jepsen N, Pedersen MI, Okland F (2010) Survival and progression rates of large European silver eel Anguilla anguilla in late freshwater and early marine phases. Aquat Biol 9(3):263–270. doi: 10.3354/ab00260 CrossRefGoogle Scholar
  2. Adams A, Wolfe RK, Barkowski N, Overcash D (2009) Fidelity to spawning grounds by a catadromous fish, Centropomus undecimalis. Mar Ecol Prog Ser 389:213–222. doi: 10.3354/meps08198 CrossRefGoogle Scholar
  3. Andrews KS, Levin PS, Katz SL, Farrer D, Gallucci VF, Bargmann G (2007) Acoustic monitoring of sixgill shark movements in Puget Sound: evidence for localized movement. Can J Zool Rev Can Zool 85(11):1136–1142. doi: 10.1139/z07-088 CrossRefGoogle Scholar
  4. Anras MLB, Gyselman EC, Jorgenson JK, Kristofferson AH, Anras L (1999) Habitat preferences and residence time for the freshwater to ocean transition stage in Arctic charr. J Mar Biol Assoc UK 79(1):153–160CrossRefGoogle Scholar
  5. Arendt MD, Lucy JA, Evans DA (2001) Diel and seasonal activity patterns of adult tautog, Tautoga onitis, in lower Chesapeake Bay, inferred from ultrasonic telemetry. Environ Biol Fishes 62(4):379–391. doi: 10.1023/a:1012266214143 CrossRefGoogle Scholar
  6. Balfry S, Welch DW, Atkinson J, Lill A, Vincent S (2011) The effect of hatchery release strategy on marine migratory behaviour and apparent survival of Seymour river steelhead smolts (Oncorhynchus mykiss). PLoS ONE 6(3):12. doi: 10.1371/journal.pone.0014779 CrossRefGoogle Scholar
  7. Bansemer CS, Bennett MB (2009) Reproductive periodicity, localised movements and behavioural segregation of pregnant Carcharias taurus at Wolf Rock, southeast Queensland, Australia. Mar Ecol Prog Ser 374:215–227. doi: 10.3354/meps07741 CrossRefGoogle Scholar
  8. Bassett D, Montgomery J (2011) Home range use and movement patterns of the yellow moray eel Gymnothorax prasinus. J Fish Biol 79(2):520–525. doi: 10.1111/j.1095-8649.2011.03018.x PubMedCrossRefGoogle Scholar
  9. Bellquist LF, Lowe CG, Caselle JE (2008) Fine-scale movement patterns, site fidelity, and habitat selection of ocean whitefish (Caulolatilus princeps). Fish Res 91(2–3):325–335. doi: 10.1016/j.fishres.2007.12.011 CrossRefGoogle Scholar
  10. Bertelsen RD, Hornbeck J (2009) Using acoustic tagging to determine adult spiny lobster (Panulirus argus) movement patterns in the Western Sambo Ecological Reserve (Florida, United States). NZ J Mar Freshw Res 43(1):35–46CrossRefGoogle Scholar
  11. Bessudo S, Soler GA, Klimley AP, Ketchum JT, Hearn A, Arauz R (2011) Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environ Biol Fishes 91(2):165–176. doi: 10.1007/s10641-011-9769-3 CrossRefGoogle Scholar
  12. Campbell HA, Watts ME, Dwyer RG, Franklin CE (2012) V-Track: software for analysing and visualising animal movement from acoustic telemetry detections. Mar Freshw Res 63(9):815–820. doi: 10.1071/MF12194 CrossRefGoogle Scholar
  13. Chittenden CM, Sura S, Butterworth KG, Cubitt KF, Plantalech Manel-la N, Balfry S, ØKland F, McKinley RS (2008) Riverine, estuarine and marine migratory behaviour and physiology of wild and hatchery-reared coho salmon Oncorhynchus kisutch (Walbaum) smolts descending the Campbell River, BC, Canada. J Fish Biol 72(3):614–628. doi: 10.1111/j.1095-8649.2007.01729.x CrossRefGoogle Scholar
  14. Chittenden CM, Beamish RJ, Neville CM, Sweeting RM, McKinley RS (2009) The use of acoustic tags to determine the timing and location of the juvenile coho salmon migration out of the Strait of Georgia, Canada. Trans Am Fish Soc 138(6):1220–1225. doi: 10.1577/t09-037.1 CrossRefGoogle Scholar
  15. Claisse JT, Clark TB, Schumacher BD, McTee SA, Bushnell ME, Callan CK, Laidley CW, Parrish JD (2011) Conventional tagging and acoustic telemetry of a small surgeonfish, Zebrasoma flavescens, in a structurally complex coral reef environment. Environ Biol Fishes 91(2):185–201. doi: 10.1007/s10641-011-9771-9 CrossRefGoogle Scholar
  16. Clements S, Jepsen D, Karnowski M, Schreck CB (2005) Optimization of an acoustic telemetry array for detecting transmitter-implanted fish. North Am J Fish Manag 25(2):429–436. doi: 10.1577/m03-224.1 CrossRefGoogle Scholar
  17. Comeau LA, Campana SE, Castonguay M (2002) Automated monitoring of a large-scale cod (Gadus morhua) migration in the open sea. Can J Fish Aquat Sci 59(12):1845–1850. doi: 10.1139/f02-152 CrossRefGoogle Scholar
  18. Comeau LA, Sonier R, Hanson JM (2012) Seasonal movements of Atlantic rock crab (Cancer irroratus Say) transplanted into a mussel aquaculture site. Aquac Res 43(4):509–517. doi: 10.1111/j.1365-2109.2011.02856.x CrossRefGoogle Scholar
  19. Conrath CL, Musick JA (2010) Residency, space use and movement patterns of juvenile sandbar sharks (Carcharhinus plumbeus) within a Virginia summer nursery area. Mar Freshw Res 61(2):223–235. doi: 10.1071/mf09078 CrossRefGoogle Scholar
  20. Cooke SJ, Niezgoda GH, Hanson KC, Suski CD, Phelan FJS, Tinline R, Philipp DP (2005) Use of CDMA acoustic telemetry to document 3-D positions of fish: relevance to the design and monitoring of aquatic protected areas. Mar Technol Soc J 39(1):31–41CrossRefGoogle Scholar
  21. Cooke SJ, Iverson SJ, Stokesbury MJW, Hinch SG, Fisk AT, VanderZwaag DL, Apostle R, Whoriskey F (2011) Ocean Tracking Network Canada: a network approach to addressing critical issues in fisheries and resource management with implications for ocean governance. Fisheries 36(12):583–592CrossRefGoogle Scholar
  22. Cooke SJ, Hinch SG, Lucas MC, Lutcavage M (2012) Biotelemetry and biologging. In: Zale AV, Parrish DL, Sutton TM (eds) Fisheries techniques, 3rd edn. American Fisheries Society, Bethesda, MD, pp 819–860Google Scholar
  23. Dagorn L, Holland KN, Itano DG (2007) Behavior of yellowfin (Thunnus albacares) and bigeye (T. obesus) tuna in a network of fish aggregating devices (FADs). Mar Biol 151(2):595–606. doi: 10.1007/s00227-006-0511-1 CrossRefGoogle Scholar
  24. D’Anna G, Giacalone VM, Pipitone C, Badalamenti F (2011) Movement pattern of white seabream, Diplodus sargus (L., 1758) (Osteichthyes, Sparidae) acoustically tracked in an artificial reef area. Ital J Zool 78(2):255–263. doi: 10.1080/11250000903464059 Google Scholar
  25. Davidsen JG, Rikardsen AH, Halttunen E, Thorstad EB, Okland F, Letcher BH, Skardhamar J, Naesje TF (2009) Migratory behaviour and survival rates of wild northern Atlantic salmon Salmo salar post-smolts: effects of environmental factors. J Fish Biol 75(7):1700–1718. doi: 10.1111/j.1095-8649.2009.02423.x PubMedCrossRefGoogle Scholar
  26. Domeier ML (2005) Methods for the deployment and maintenance of an acoustic tag tracking array: an example from California’s channel Islands. Mar Technol Soc J 39(1):74–80CrossRefGoogle Scholar
  27. Egli DP, Babcock RC (2004) Ultrasonic tracking reveals multiple behavioural modes of snapper (Pagrus auratus) in a temperate no-take marine reserve. ICES J Mar Sci 61(7):1137–1143. doi: 10.1016/j.icesjms.2004.07.004 CrossRefGoogle Scholar
  28. Espinoza M, Farrugia TJ, Lowe CG (2011a) Habitat use, movements and site fidelity of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored southern California estuary. J Exp Mar Biol Ecol 401(1–2):63–74. doi: 10.1016/j.jembe.2011.03.001 CrossRefGoogle Scholar
  29. Espinoza M, Farrugia TJ, Webber DM, Smith F, Lowe CG (2011b) Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fish Res 108(2–3):364–371. doi: 10.1016/j.fishres.2011.01.011 CrossRefGoogle Scholar
  30. Fairchild EA, Rennels N, Howell H (2009) Using telemetry to monitor movements and habitat use of cultured and wild juvenile winter flounder in a shallow estuary. In: Nielsen JL, Arrizabalaga H, Fragoso N, Hobday A, Lutcavage M, Sibert J (eds) Tagging and tracking of marine animals with electronic devices. Reviews-methods and technologies in fish biology and fisheries, vol 9. Springer, Dordrecht, pp 5–22. doi: 10.1007/978-1-4020-9640-2_1
  31. Field IC, Meekan MG, Speed CW, White W, Bradshaw CJA (2011) Quantifying movement patterns for shark conservation at remote coral atolls in the Indian Ocean. Coral Reefs 30(1):61–71. doi: 10.1007/s00338-010-0699-x CrossRefGoogle Scholar
  32. Filmalter JD, Dagorn L, Cowley PD, Taquet M (2011) First descriptions of the behavior of silky sharks, Carcharhinus falciformis, around drifting fish aggregating devices in the Indian Ocean. Bull Mar Sci 87(3):325–337. doi: 10.5343/bms 2010.1057CrossRefGoogle Scholar
  33. Finstad B, Økland F, Thorstad EB, BjØrn PA, McKinley RS (2005) Migration of hatchery-reared Atlantic salmon and wild anadromous brown trout post-smolts in a Norwegian fjord system. J Fish Biol 66(1):86–96. doi: 10.1111/j.0022-1112.2005.00581.x CrossRefGoogle Scholar
  34. Fujioka K, Hobday AJ, Kawabe R, Miyashita K, Honda K, Itoh T, Takao Y (2010a) Interannual variation in summer habitat utilization by juvenile southern bluefin tuna (Thunnus maccoyii) in southern Western Australia. Fish Oceanogr 19(3):183–195. doi: 10.1111/j.1365-2419.2010.00536.x CrossRefGoogle Scholar
  35. Fujioka K, Kawabe R, Hobday AJ, Takao Y, Miyashita K, Sakai O, Itoh T (2010b) Spatial and temporal variation in the distribution of juvenile southern bluefin tuna Thunnus maccoyii: implication for precise estimation of recruitment abundance indices. Fish Sci 76(3):403–410. doi: 10.1007/s12562-010-0228-4 CrossRefGoogle Scholar
  36. Girard C, Dagorn L, Taquet M, Aumeeruddy R, Peignon C, Benhamou S (2007) Homing abilities of dolphinfish (Coryphaena hippurus) displaced from fish aggregating devices (FADs) determined using ultrasonic telemetry. Aquat Living Resour 20(4):313–321. doi: 10.1051/alr:2008005 CrossRefGoogle Scholar
  37. Gjelland KØ, Hedger RD (2013) Environmental influence on transmitter detection probability in biotelemetry: developing a general model of acoustic transmission. Methods Ecol Evol. doi: 10.1111/2041-210x.12057 Google Scholar
  38. Hannah RW, Rankin PS (2011) Site fidelity and movement of eight species of Pacific rockfish at a high-relief rocky reef on the Oregon coast. North Am J Fish Manag 31(3):483–494. doi: 10.1080/02755947.2011.591239 CrossRefGoogle Scholar
  39. Hedger RD, Fo Martin, Dodson JJ, Hatin D, Fo Caron, Whoriskey FG (2008) The optimized interpolation of fish positions and speeds in an array of fixed acoustic receivers. ICES J Mar Sci 65(7):1248–1259. doi: 10.1093/icesjms/fsn109 CrossRefGoogle Scholar
  40. Heupel MR, Webber DM (2012) Trends in acoustic tracking: where are the fish going and how will we follow them. Am Fish Soc Symp 76:219–231Google Scholar
  41. Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar Freshw Res 57(1):1–13. doi: 10.1071/MF05091 CrossRefGoogle Scholar
  42. Heupel MR, Reiss KL, Yeiser BG, Simpfendorfer CA (2008) Effects of biofouling on performance of moored data logging acoustic receivers. Limnol Oceanogr Methods 6:327–335CrossRefGoogle Scholar
  43. How JR, de Lestang S (2012) Acoustic tracking: issues affecting design, analysis and interpretation of data from movement studies. Mar Freshw Res 63(4):312–324. doi: 10.1071/MF11194 CrossRefGoogle Scholar
  44. Hubley PB, Amiro PG, Gibson AJF, Lacroix GL, Redden AM (2008) Survival and behaviour of migrating Atlantic salmon (Salmo salar L.) kelts in river, estuarine, and coastal habitat. ICES J Mar Sci 65(9):1626–1634. doi: 10.1093/icesjms/fsn129 CrossRefGoogle Scholar
  45. Humston R, Ault JS, Larkin MF, Luo J (2005) Movements and site fidelity of the bonefish Albula vulpes in the northern Florida Keys determined by acoustic telemetry. Mar Ecol Prog Ser 291:237–248. doi: 10.3354/meps291237 CrossRefGoogle Scholar
  46. Ireland LC, Barlow RB (1978) Tracking normal and blindfolded limulus in ocean by means of acoustic telemetry. Biol Bull 155(2):445–446Google Scholar
  47. Jorgensen SJ, Kaplan DM, Klimley AP, Morgan SG, O’Farrell MR, Botsford LW (2006) Limited movement in blue rockfish Sebastes mystinus: internal structure of home range. Mar Ecol Prog Ser 327:157–170. doi: 10.3354/meps327157 CrossRefGoogle Scholar
  48. Kanwisher J, Lawson K, Sundnes G (1974) Acoustic telemetry from fish. Fish Bull 72(2):251–255Google Scholar
  49. Kawabata Y, Okuyama J, Asami K, Okuzawa K, Yoseda K, Arai N (2010) Effects of a tropical cyclone on the distribution of hatchery-reared black-spot tuskfish Choerodon schoenleinii determined by acoustic telemetry. J Fish Biol 77(3):627–642. doi: 10.1111/j.1095-8649.2010.02702.x PubMedGoogle Scholar
  50. Kerwath SE, Gotz A, Attwood CG, Sauer WHH, Wilke CG (2007) Area utilisation and activity patterns of roman Chrysoblephus laticeps (Sparidae) in a small marine protected area. Afr J Mar Sci 29(2):259–270. doi: 10.2989/ajms.2007.29.2.10.193 CrossRefGoogle Scholar
  51. Kerwath SE, Thorstad EB, Naesje TF, Cowley PD, Okland F, Wilke C, Attwood CG (2009) Crossing invisible boundaries: the effectiveness of the Langebaan Lagoon Marine Protected Area as a harvest refuge for a migratory fish species in South Africa. Conserv Biol 23(3):653–661. doi: 10.1111/j.1523-1739.2008.01135.x PubMedCrossRefGoogle Scholar
  52. Klimley AP, Butler SB (1988) Immigration and emigration of a pelagic fish assemblage to seamounts in the Gulf of California related to water mass movements using satellite imagery. Mar Ecol Prog Ser 49(1–2):11–20. doi: 10.3354/meps049011 CrossRefGoogle Scholar
  53. Klimley AP, Butler SB, Nelson DR, Stull AT (1988) Diel movements of scalloped hammerhead sharks, Sphyrna lewini griffith and smith, to and from a seamount in the Gulf of Galifornia. J Fish Biol 33(5):751–761CrossRefGoogle Scholar
  54. Lacroix GL, McCurdy P (1996) Migratory behaviour of post-smolt Atlantic salmon during initial stages of seaward migration. J Fish Biol 49(6):1086–1101. doi: 10.1111/j.1095-8649.1996.tb01780.x CrossRefGoogle Scholar
  55. Lembo G, Spedicato MT, Okland F, Carbonara P, Fleming IA, McKinley RS, Thorstad EB, Sisak M, Ragonese S (2002) A wireless communication system for determining site fidelity of juvenile dusky groupers Epinephelus marginatus (Lowe, 1834) using coded acoustic transmitters. Hydrobiologia 483(1–3):249–257. doi: 10.1023/a:1021360419150 CrossRefGoogle Scholar
  56. Lindholm J, Auster PJ, Knight A (2007) Site fidelity and movement of adult Atlantic cod Gadus morhua at deep boulder reefs in the western Gulf of Maine, USA. Mar Ecol Prog Ser 342:239–247. doi: 10.3354/meps342239 CrossRefGoogle Scholar
  57. Lino PG, Bentes L, Oliveira MT, Erzini K, Santos MN (2011) The African hind’s (Cephalopholis taeniops, serranidae) use of artificial reefs off Sal Island (Cape Verde): a preliminary study based on acoustic telemetry. Br J Oceanogr 59:69–76CrossRefGoogle Scholar
  58. Lowe CG, Anthony KM, Jarvis ET, Bellquist LF, Love MS (2009) Site-fidelity and movement patterns of groundfish associated with offshore petroleum platforms in the Santa Barbara Channel. Mar Coast Fish 1(1):71–89. doi: 10.1577/c08-047.1 CrossRefGoogle Scholar
  59. MacArthur LD, Babcock RC, Hyndes GA (2008) Movements of the western rock lobster (Panulirus cygnus) within shallow coastal waters using acoustic telemetry. Mar Freshw Res 59(7):603–613. doi: 10.1071/mf07239 CrossRefGoogle Scholar
  60. Maljkovic A, Cote IM (2011) Effects of tourism-related provisioning on the trophic signatures and movement patterns of an apex predator, the Caribbean reef shark. Biol Conserv 144(2):859–865. doi: 10.1016/j.biocon.2010.11.019 CrossRefGoogle Scholar
  61. Manel-la NP, Chittenden CM, Okland F, Thorstad EB, Davidsen JG, Sivertsgard R, McKinley RS, Finstad B (2011) Does river of origin influence the early marine migratory performance of Salmo salar? J Fish Biol 78(2):624–634. doi: 10.1111/j.1095-8649.2010.02882.x CrossRefGoogle Scholar
  62. McKibben JN, Nelson DR (1986) Patterns of movement and grouping of gray reef sharks, Carcharhinus amblyrhynchos, at Enewetak, Marshall Islands. Bull Mar Sci 38(1):89–110Google Scholar
  63. Medwin H, Clay CS (1997) Fundamentals of acoustical oceanography. Elsevier Science, AmsterdamGoogle Scholar
  64. Melnychuk MC (2009) Estimation of survival and detection probabilities for multiple tagged salmon stocks with nested migration routes, using a large-scale telemetry array. Mar Freshw Res 60(12):1231–1243. doi: 10.1071/MF08361 CrossRefGoogle Scholar
  65. Melnychuk MC, Christensen V (2009) Methods for estimating detection efficiency and tracking acoustic tags with mobile transect surveys. J Fish Biol 75(7):1773–1794. doi: 10.1111/j.1095-8649.2009.02428.x PubMedCrossRefGoogle Scholar
  66. Melnychuk MC, Walters CJ (2010) Estimating detection probabilities of tagged fish migrating past fixed receiver stations using only local information. Can J Fish Aquat Sci 67(4):641–658. doi: 10.1139/f09-199 CrossRefGoogle Scholar
  67. Mitsunaga Y, Endo C, Anraku K, Selorio CM, Babaran RP (2012) Association of early juvenile yellowfin tuna Thunnus albacares with a network of payaos in the Philippines. Fish Sci 78(1):15–22. doi: 10.1007/s12562-011-0431-y CrossRefGoogle Scholar
  68. Moore ME, Berejikian BA, Tezak EP (2010) Early marine survival and behavior of steelhead smolts through Hood Canal and the Strait of Juan de Fuca. Trans Am Fish Soc 139(1):49–61. doi: 10.1577/t09-012.1 CrossRefGoogle Scholar
  69. Niezgoda G, Benfield M, Sisak M, Anson P (2002) Tracking acoustic transmitters by code division multiple access (CDMA)-based telemetry. Hydrobiologia 483(1–3):275–286. doi: 10.1023/a:1021368720967 CrossRefGoogle Scholar
  70. O’Toole A, Danylchuk A, Goldberg T, Suski C, Philipp D, Brooks E, Cooke S (2011) Spatial ecology and residency patterns of adult great barracuda (Sphyraena barracuda) in coastal waters of The Bahamas. Mar Biol 158(10):2227–2237. doi: 10.1007/s00227-011-1728-1 CrossRefGoogle Scholar
  71. Olsen EM, Moland E (2011) Fitness landscape of Atlantic cod shaped by harvest selection and natural selection. Evol Ecol 25(3):695–710. doi: 10.1007/s10682-010-9427-9 CrossRefGoogle Scholar
  72. Payne N, Gillanders B, Webber D, Semmens J (2010) Interpreting diel activity patterns from acoustic telemetry: the need for controls. Mar Ecol Prog Ser 419:295–301. doi: 10.3354/meps08864 CrossRefGoogle Scholar
  73. Reynolds BF, Powers SP, Bishop MA (2010) Application of acoustic telemetry to assess residency and movements of rockfish and lingcod at created and natural habitats in Prince William Sound. PLoS ONE 5(8):e12130PubMedCentralPubMedCrossRefGoogle Scholar
  74. Rillahan C, Chambers M, Howell WH, Watson WH (2009) A self-contained system for observing and quantifying the behavior of Atlantic cod, Gadus morhua, in an offshore aquaculture cage. Aquaculture 293(1–2):49–56. doi: 10.1016/j.aquaculture.2009.04.003 CrossRefGoogle Scholar
  75. Roscoe DW, Hinch SG, Cooke SJ, Patterson DA (2011) Fishway passage and post-passage mortality of up-river migrating sockeye salmon in the Seton River, British Columbia. River Res Appl 27(6):693–705. doi: 10.1002/rra.1384 CrossRefGoogle Scholar
  76. Sakabe R, Lyle JM (2010) The influence of tidal cycles and freshwater inflow on the distribution and movement of an estuarine resident fish Acanthopagrus butcheri. J Fish Biol 77(3):643–660. doi: 10.1111/j.1095-8649.2010.02703.x PubMedGoogle Scholar
  77. Serrano I, Larsson S, Eriksson LO (2009) Migration performance of wild and hatchery sea trout (Salmo trutta L.) smolts-Implications for compensatory hatchery programs. Fish Res 99(3):210–215. doi: 10.1016/j.fishres.2009.06.004 CrossRefGoogle Scholar
  78. Simpfendorfer CA, Heupel MR, Hueter RE (2002) Estimation of short-term centers of activity from an array of omnidirectional hydrophones and its use in studying animal movements. Can J Fish Aquat Sci 59(1):23–32. doi: 10.1139/f01-191 CrossRefGoogle Scholar
  79. Simpfendorfer CA, Heupel MR, Collins AB (2008) Variation in the performance of acoustic receivers and its implication for positioning algorithms in a riverine setting. Can J Fish Aquat Sci 65(3):482–492. doi: 10.1139/f07-180 CrossRefGoogle Scholar
  80. Singh L, Downey NJ, Roberts MJ, Webber DM, Smale MJ, van den Berg MA, Harding RT, Engelbrecht DC, Blows BM (2009) Design and calibration of an acoustic telemetry system subject to upwelling events. Afr J Mar Sci 31(3):355–364. doi: 10.2989/ajms.2009.31.3.8.996 CrossRefGoogle Scholar
  81. Speed CW, Meekan MG, Field IC, McMahon CR, Stevens JD, McGregor F, Huveneers C, Berger Y, Bradshaw CJA (2011) Spatial and temporal movement patterns of a multi-species coastal reef shark aggregation. Mar Ecol Prog Ser 429:261–275CrossRefGoogle Scholar
  82. Starr RM, Heine JN, Johnson KA (2000) Techniques for tagging and tracking deepwater rockfishes. North Am J Fish Manag 20(3):597–609. doi: 10.1577/1548-8675(2000)020<0597:tftatd>2.3.co;2 CrossRefGoogle Scholar
  83. Starr RM, Heine JN, Felton JM, Cailliet GM (2002) Movements of bocaccio (Sebastes paucispinis) and greenspotted (S. chlorostictus) rockfishes in a Monterey submarine canyon: implications for the design of marine reserves. Fish Bull 100(2):324–337Google Scholar
  84. Sulak KJ, Randall MT, Edwards RE, Summers TM, Luke KE, Smith WT, Norem AD, Harden WM, Lukens RH, Parauka F, Bolden S, Lehnert R (2009) Defining winter trophic habitat of juvenile Gulf sturgeon in the Suwannee and Apalachicola rivermouth estuaries, acoustic telemetry investigations. J Appl Ichthyol 25(5):505–515. doi: 10.1111/j.1439-0426.2009.01333.x CrossRefGoogle Scholar
  85. Thorstad EB, Økland F, Rowsell D, McKinley RS (2000) A system for automatic recording of fish tagged with coded acoustic transmitters. Fish Manage Ecol 7(4):281–294. doi: 10.1046/j.1365-2400.2000.007004281.x CrossRefGoogle Scholar
  86. Topping DT, Szedlmayer ST (2011a) Home range and movement patterns of red snapper (Lutjanus campechanus) on artificial reefs. Fish Res 112(1–2):77–84. doi: 10.1016/j.fishres.2011.08.013 CrossRefGoogle Scholar
  87. Topping DT, Szedlmayer ST (2011b) Site fidelity, residence time and movements of red snapper Lutjanus campechanus estimated with long-term acoustic monitoring. Mar Ecol Prog Ser 437:183–200. doi: 10.3354/meps09293 CrossRefGoogle Scholar
  88. Topping DT, Lowe CG, Caselle JE (2006) Site fidelity and seasonal movement patterns of adult California sheephead Semicossyphus pulcher (Labridae): an acoustic monitoring study. Mar Ecol Prog Ser 326:257–267CrossRefGoogle Scholar
  89. Udyawer V, Chin A, Knip DM, Simpfendorfer CA, Heupel MR (2013) Variable response of coastal sharks to severe tropical storms: environmental cues and changes in space use. Mar Ecol Prog Ser 480:171–183Google Scholar
  90. Walsh CT, Reinfelds IV, Gray CA, West RJ, van der Meulen DE, Craig JR (2012) Seasonal residency and movement patterns of two co-occurring catadromous percichthyids within a south-eastern Australian river. Ecol Freshw Fish 21(1):145–159. doi: 10.1111/j.1600-0633.2011.00534.x CrossRefGoogle Scholar
  91. Welch DW, Boehlert GW, Ward BR (2002) POST “the pacific ocean salmon tracking project”. Oceanol Acta 25(5):243–253CrossRefGoogle Scholar
  92. Welch DW, Rechisky EL, Melnychuk MC, Porter AD, Walters CJ, Clements S, Clemens BJ, McKinley RS, Schreck C (2008) Survival of migrating salmon smolts in large rivers with and without dams. PLoS Biol 6(10):e265PubMedCentralPubMedCrossRefGoogle Scholar
  93. Welch DW, Melnychuk MC, Rechisky ER, Porter AD, Jacobs MC, Ladouceur A, McKinley RS, Jackson GD (2009) Freshwater and marine migration and survival of endangered Cultus Lake sockeye salmon (Oncorhynchus nerka) smolts using POST, a large-scale acoustic telemetry array. Can J Fish Aquat Sci 66(5):736–750. doi: 10.1139/f09-032 CrossRefGoogle Scholar
  94. Westmeyer MP, Wilson CA, Nieland DL (2007) Fidelity of red snapper to petroleum platforms in the northern Gulf of Mexico. In: Patterson WF, Cowan JH, Fitzhugh GR, Nieland DL (eds) Red snapper ecology and fisheries in the U.S. Gulf of Mexico. American Fisheries Society Symposium, vol 60. American Fisheries Society, Bethesda, pp 105–121Google Scholar
  95. Whitty JM, Morgan DL, Peverell SC, Thorburn DC, Beatty SJ (2009) Ontogenetic depth partitioning by juvenile freshwater sawfish (Pristis microdon: Pristidae) in a riverine environment. Mar Freshw Res 60(4):306–316. doi: 10.1071/mf08169 CrossRefGoogle Scholar
  96. Williams GD, Andrews KS, Katz SL, Moser ML, Tolimieri N, Farrer DA, Levin PS (2012) Scale and pattern of broadnose sevengill shark Notorynchus cepedianus movement in estuarine embayments. J Fish Biol 80(5):1380–1400. doi: 10.1111/j.1095-8649.2011.03179.x PubMedCrossRefGoogle Scholar
  97. Willis J, Hobday AJ (2007) Influence of upwelling on movement of southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight. Mar Freshw Res 58(8):699–708. doi: 10.1071/mf07001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. T. Kessel
    • 1
  • S. J. Cooke
    • 2
  • M. R. Heupel
    • 3
    • 4
  • N. E. Hussey
    • 1
  • C. A. Simpfendorfer
    • 3
  • S. Vagle
    • 5
  • A. T. Fisk
    • 1
  1. 1.Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorCanada
  2. 2.Department of BiologyCarleton UniversityOttawaCanada
  3. 3.Centre for Sustainable Tropical Fisheries and Aquaculture, School of Earth and Environmental SciencesJames Cook UniversityTownsvilleAustralia
  4. 4.Australian Institute of Marine ScienceTownsvilleAustralia
  5. 5.Institute of Ocean Sciences, Fisheries and Oceans CanadaSidneyCanada

Personalised recommendations