Reviews in Fish Biology and Fisheries

, Volume 24, Issue 2, pp 415–425 | Cite as

Identification of global marine hotspots: sentinels for change and vanguards for adaptation action

Research Paper

Abstract

Major changes consistent with the fingerprint of global warming have been reported for nearly every ecosystem on earth. Recently, studies have moved beyond correlation-based inference to demonstrate mechanistic links between warming and biological responses, particularly in regions experiencing rapid change. However, the assessment of climate change impacts and development of adaptation options that humans can undertake are at the earliest stages, particularly for marine systems. Here, we use trends in ocean temperature to characterize regions that can act as natural laboratories or focal points for early learning. These discrete marine ‘hotspots’, where ocean warming is fastest, were identified based on 50 years of historical sea surface temperature data. Persistence of these hotspots into the future was evaluated using global climate models. This analysis provides insights and a starting point for scientists aiming to identify key regions of concern with regard to ocean warming, and illustrates a potential approach for considering additional physical drivers of change such as ocean pH or oxygenation. We found that some hotspot regions were of particular concern due to other non-climate stressors. For instance, many of the marine hotspots occur where human dependence on marine resources is greatest, such as south-east Asia and western Africa, and are therefore of critical consideration in the context of food security. Intensive study and development of comprehensive inter-disciplinary networks based on the hotspot regions identified here will allow earliest testing of management and adaptation pathways, facilitating rapid global learning and implementation of adaptation options to cope with future change.

Keywords

Climate change impacts Fisheries adaptation Food security Global collaboration International cooperation Ocean warming 

References

  1. ABARES (2011) Australian fisheries statistics 2010. Canberra, AugustGoogle Scholar
  2. Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Global Environ Change 15:77–86CrossRefGoogle Scholar
  3. Allison EH, Perry AL, Badjeck M-C, Adger WN, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi:10.1111/j.1467-2979.2008.00310.x CrossRefGoogle Scholar
  4. Badjeck MC, Allison EH, Halls AS, Dulvy NK (2010) Impacts of climate variability and change on fishery-based livelihoods. Mar Policy 34:375–383CrossRefGoogle Scholar
  5. Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81:207–213CrossRefGoogle Scholar
  6. Bell JD, Kronen M, Vunisea A, Nash WJ, Keeble G, Demmke A, Pontifex S, Andrefouet S (2009) Planning the use of fish for food security in the Pacific. Mar Policy 33:64–76CrossRefGoogle Scholar
  7. Branch TA, Jensen OP, Ricard D, Ye Y, Hilborn R (2011) Contrasting global trends in marine fishery status obtained from catches and from stock assessments. Conserv Biol. doi:10.1111/j.1523-1739.2011.01687.x Google Scholar
  8. Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:R602–R614PubMedCrossRefGoogle Scholar
  9. Brown CJ, Fulton EA, Hobday AJ, Matear RJ, Possingham H, Bulman C, Christensen V, Forrest R, Gehrke P, Gribble N, Griffiths SP, Lozano-Montes H, Martin JM, Metcalf S, Okey TA, Watson R, Richardson AJ (2009) Effects of climate-driven primary production change on marine food webs: implications for fisheries and conservation. Global Change Biol 16:1194–1212CrossRefGoogle Scholar
  10. Burrows MT, Schoeman DS, Buckley LB, Moore PJ, Poloczanksa ES, Brander KM, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655. doi:10.1126/science.1210288 PubMedCrossRefGoogle Scholar
  11. Burrows MT, Schoeman DS, Duarte CM, O’Connor MI, Buckley LB, Kappel CV, Parmesan C, Halpern BS, Brown C, Brander KM, Bruno JF, Pandolfi JM, Sydeman WJ, Moore P, Kiessling W, Richardson AJ, Poloczanska ES (2012) Response to “invasive species unchecked by climate”. Science 335:538–539CrossRefGoogle Scholar
  12. Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Ocean Mar Biol Ann Rev 49:1–42Google Scholar
  13. Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35:L19609CrossRefGoogle Scholar
  14. Cardillo M, Mace GM, Gittleman JL, Purvis A (2006) Latent extinction risk and the future battlegrounds of mammal conservation. Proc Natl Acad Sci 103:4157–4161PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026PubMedCrossRefGoogle Scholar
  16. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251. doi:10.1111/j.1467-2979.2008.00315.x CrossRefGoogle Scholar
  17. Cochrane K, De Young C, Soto D, Bahri, T (ed) (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Tech. Paper 530. Rome, FAOGoogle Scholar
  18. Diffenbaugh NS, Giorgi F, Pal JS (2008) Climate change hotspots in the United States. Geophys Res Lett 35:L16709CrossRefGoogle Scholar
  19. Dillon ME, Wang G, Wang RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706PubMedCrossRefGoogle Scholar
  20. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Ann Rev Env Res 28:137–167CrossRefGoogle Scholar
  21. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1094PubMedCrossRefGoogle Scholar
  22. Edgar GJ, Banks SA, Brandt M, Bustamante RH, Chiriboga A, Earle SA, Garske LE, Glynn PW, Grove JS, Henderson S, Hickman CP, Miller KA, Rivera F, Wellington GM (2009) El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Global Change Biol 16:2876–2890. doi:10.1111/j.1365-2486.2009.02117.x CrossRefGoogle Scholar
  23. Frusher SD, Hobday AJ, Jennings SM, Creighton C, D’Silva D, Haward M, Holbrook NJ, Nursey-Bray M, Pecl GT, van Putten I (2013) The short history of research in a marine climate change hotspot: from anecdote to adaptation in south-east Australia. Rev Fish Bio Fish. doi:10.1007/s11160-013-9325-7
  24. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707CrossRefGoogle Scholar
  25. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952PubMedCrossRefGoogle Scholar
  26. Halpern BS, Longo C, Hardy D, McLeod KL, Samhouri JF, Katona SK, Kleisner K, Lester SE, O’Leary J, Ranelletti M, Rosenberg AA, Scarborough C, Selig ER, Best BD, Brumbaugh DR, Chapin FS, Crowder LB, Daly KL, Doney SC, Elfes C, Fogarty MJ, Gaines SD, Jacobsen KI, Karrer LB, Leslie HM, Neeley E, Pauly D, Polasky S, Ris B, St Martin K, Stone GS, Sumaila UR, Zeller D (2012) An index to assess the health and benefits of the global ocean. Nature 488:615–620PubMedCrossRefGoogle Scholar
  27. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci 103:14288–14293PubMedCentralPubMedCrossRefGoogle Scholar
  28. Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241PubMedCrossRefGoogle Scholar
  29. Hill KL, Rintoul SR, Coleman R, Ridgway KR (2008) Wind forced low frequency variability of the East Australia Current. Geophys Res Lett 35:L08602Google Scholar
  30. Hobday AJ, Lough J (2011) Projected climate change in Australian marine and freshwater environments. Mar Freshw Res 62:1000–1014CrossRefGoogle Scholar
  31. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  32. Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794CrossRefGoogle Scholar
  33. IPCC 2007 The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, (2007) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press. Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  34. Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NL, Hosie GW, Last PR, Ling SD, Melbourne-Thomas J, Miller K, Pecl GT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N (2011) Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Biol Ecol. doi:10.1016/j.jembe.2011.02.032 Google Scholar
  35. Last PR, White WT, Gledhill DC, Hobday AJ, Brown R, Edgar GJ, Pecl GT (2011) Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecol Biogeogr 20:58–72. doi:10.1111/j.1466-8238.2010.00575.x CrossRefGoogle Scholar
  36. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604Google Scholar
  37. Lima F, Wethey DS (2012) Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nature. doi:10.1038/ncomms1713 Google Scholar
  38. Ling SD, Johnson CR, Ridgway K, Hobday AJ, Haddon M (2009) Climate driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biol 15:719–731CrossRefGoogle Scholar
  39. Lough JM (2008) Shifting climate zones for Australia’s tropical marine ecosystems. Geophys Res Lett 35:L14708CrossRefGoogle Scholar
  40. Lough JM, Hobday AJ (2011) Observed climate change in Australian marine and freshwater environments. Mar Freshwat Res 62:984–999CrossRefGoogle Scholar
  41. Madeira D, Narciso L, Cabral HN, Vinagre C (2012) Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J Sea Res 70:32–41CrossRefGoogle Scholar
  42. Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18:309–320PubMedCrossRefGoogle Scholar
  43. Parry M, Lowe J, Hanson C (2009) Overshoot, adapt and recover. Nature 358:1102–1103CrossRefGoogle Scholar
  44. Pecl GT, Frusher S, Gardner C, Haward M, Hobday AJ, Jennings S, Nursey-Bray M, Punt A, Revill H, van Putten I (2009) The east coast Tasmanian rock lobster fishery—vulnerability to climate change impacts and adaptation response options: Report to the Department of Climate Change, Australia. www.tafi.org.au/publications/rock-lobser-full.pdf
  45. Pfeiffer L, Haynie AC (2012) The effect of decreasing seasonal sea-ice cover on the winter Bering Sea pollock fishery. ICES J Mar Sci. doi:10.1093/icesjms/fss097 Google Scholar
  46. Poloczanska ES, Babcock RC, Butler A, Hobday AJ, Hoegh-Guldberg O, Kunz TJ, Matear R, Milton D, Okey TA, Richardson AJ (2007) Climate change and Australian marine life. Oceanogr Mar Biol Annu Rev 45:409–480Google Scholar
  47. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander KM, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Thompson DJ, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Change. doi:10.1038/NCLIMATE1958 Google Scholar
  48. Rahmstorf SA, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709. doi:10.1126/science.1136843 PubMedCrossRefGoogle Scholar
  49. Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor, 2007: Climate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  50. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J of Climate 19:446–469CrossRefGoogle Scholar
  51. Reid PC, Johns DG, Edwards M, Starr M, Poulin M, Snoeijs P (2007) A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Global Change Biol 13:1910–1921CrossRefGoogle Scholar
  52. Renema W, Bellwood DR, Braga JC, Bromfield K, Hall R, Johnson KG, Lunt P, Meyer CP, McMonagle LB, Morley RJ, O’Dea A, Todd JA, Wesselingh FP, Wilson MEJ, Pandolfi JM (2008) Hopping Hotspots: global Shifts in Marine Biodiversity. Science 321:654–657PubMedCrossRefGoogle Scholar
  53. Richardson AJ, Poloczanska ES (2008) Under-resourced, under threat. Science 320:1294–1295PubMedCrossRefGoogle Scholar
  54. Ridgway K (2007) Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys Res Lett 34:L13613. doi:10.1029/2007GL030393 Google Scholar
  55. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The Oceanic Sink for Anthropogenic CO2. Science 305:367–371PubMedCrossRefGoogle Scholar
  56. Schneider SH (2009) The worst-case scenario. Nature 458:1104–1105PubMedCrossRefGoogle Scholar
  57. Sherman K, Belkin IM, Friedland KD, O’Reilly J, Hyde K (2009) Accelerated warming and emergent trends in fisheries biomass yields of the world’s large marine ecosystems. Ambio 38:215–224PubMedCrossRefGoogle Scholar
  58. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J of Climate 21:2283–2296CrossRefGoogle Scholar
  59. Stafford-Smith M, Horrocks L, Harvey A, Hamilton C (2011) Rethinking adaptation for a 4°C world. Philos Trans R Soc Lond A 369:196–216CrossRefGoogle Scholar
  60. Stock CA, Alexander MA, Bond NA, Brander KM, Cheung WWL, Curchitser EN, Delworth TL, Dunne JP, Griffies SM, Haltuch MA, Hare JA, Hollowed AB, Lehodey P, Levin SA, Link JS, Rosem KA, Rykaczewski RR, Sarmiento JL, Stouffer RJ, Schwing FB, Vecchi GA, Werner FE (2011) On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog Oceanogr 88:1–27CrossRefGoogle Scholar
  61. Stokes CJ, Howden SM (2010) Adapting agriculture to climate change: Preparing Australian agriculture, forestry and fisheries for the future. CSIRO Publishing, AustraliaGoogle Scholar
  62. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2:686–690Google Scholar
  63. Thomas ER, Dennis PF, Bracegirdle TJ, Franzke C (2009) Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula. Geophys Res Lett 36:L20704. doi:10.1029/2009GL040104 CrossRefGoogle Scholar
  64. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Vanden Berghe E, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101. doi:10.1038/nature09329 PubMedCrossRefGoogle Scholar
  65. Worm B, Lotze HK, Myers RA (2003) Predator diversity hotspots in the blue ocean. Proc Natl Acad Sci USA 100:9884–9888PubMedCentralPubMedCrossRefGoogle Scholar
  66. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding global fisheries. Science 325(5940):578–585. doi:10.1126/science.1173146 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Climate Adaptation FlagshipCSIRO Marine and Atmospheric ResearchHobartAustralia
  2. 2.Adaptation Research Network for Marine Biodiversity and Resources (Biodiversity and Resources Theme)HobartAustralia
  3. 3.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia

Personalised recommendations