Reviews in Fish Biology and Fisheries

, Volume 23, Issue 2, pp 201–214 | Cite as

Chromosomal evolution of neotropical cichlids: the role of repetitive DNA sequences in the organization and structure of karyotype

  • Carlos Henrique Schneider
  • Maria Claudia Gross
  • Maria Leandra Terencio
  • Roberto Ferreira Artoni
  • Marcelo Ricardo Vicari
  • Cesar Martins
  • Eliana Feldberg
Research Paper

Abstract

Cichlids are important in the aquaculture and ornamental fish trade and are considered models for evolutionary biology. However, most studies of cichlids have investigated African species, and the South American cichlids remain poorly characterized. Studies in neotropical regions have focused almost exclusively on classical cytogenetic approaches without investigating physical chromosomal mapping of specific sequences. The aim of the present study is to investigate the genomic organization of species belonging to different tribes of the subfamily Cichlinae (Cichla monoculus, Astronotus ocellatus, Geophagus proximus, Acaronia nassa, Bujurquina peregrinabunda, Hoplarchus psittacus, Hypselecara coryphaenoides, Hypselecara temporalis, Caquetaia spectabilis, Uaru amphiacanthoides, Pterophyllum leopoldi, Pterophyllum scalare, and Symphysodon discus) and reexamine the karyotypic evolutionary patterns proposed for this group. Variations in some cytogenetic markers were observed, although no trends were found in terms of the increase, decrease, or maintenance of the basal diploid chromosome number 2n = 48 in the tribes. Several species were observed to have 18S rDNA genetic duplications, as well as multiple rDNA loci. In most of the taxa analyzed, the 5S rDNA was located in the interstitial region of a pair of homologous chromosomes, although variations from this pattern were observed. Interstitial telomere sites were also observed and appear to be involved in chromosomal rearrangement events and the accumulation of repeat-rich satellite DNA sequences. Our data demonstrated the karyotypic diversity that exists among neotropical cichlids, suggesting that most of this diversity is due to the repetitive sequences present in heterochromatic regions and that repeat sequences have greatly influenced the karyotypic evolution of these fishes.

Keywords

Karyotype evolution Interstitial telomeric sites Fluorescent in situ hybridization Ribosomal DNA 

References

  1. Bachmann L, Raab M, Sperlich D (1990) Evolution of a telomere associated satellite DNA sequence in the genome of Drosophila tristis and related species. Genetica 83:9–16PubMedGoogle Scholar
  2. Benzaquem DC, Feldberg E, Porto JIR, Gross MC, Zuanon JAS (2008) Cytotaxonomy and karyoevolution of the genus Crenicichla (Perciformes, Cichlidae). Genet Mol Biol 31:250–255CrossRefGoogle Scholar
  3. Bertollo LAC, Takahashi CS, Moreira Filho O (1978) Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Braz J Genet 1:103–120Google Scholar
  4. Bühler M (2009) RNA turnover and chromatin-dependent gene silencing. Chromosoma 118:141–151. doi:10.1007/s00412-008-0195-z PubMedCrossRefGoogle Scholar
  5. Cabral-de-Mello DC, Valente GT, Nakajima RT, Martins C (2012) Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromis niloticus. Chromosom Res 20:279–292. doi:10.1007/s10577-011-9271-y CrossRefGoogle Scholar
  6. Cazaux B, Catalan J, Veyrunes F, Douzery EJP, Britton-Davidian J (2011) Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae). BMC Evol Biol 11:124–137. doi:10.1186/1471-2148-11-124 PubMedCrossRefGoogle Scholar
  7. Feldberg E, Bertollo LAC (1985) Karyotypes of 10 species of neotropical cichlids (Pisces, Perciformes). Caryologia 38:257–268Google Scholar
  8. Feldberg E, Porto JIR, Bertollo LAC (2003) Chromosomal changes and adaptation of cichlid fishes during evolution. In: Val AL, Kapoor BG (eds) Fish adaptation. Science Publishers, Enfield, pp 285–308Google Scholar
  9. Ferreira IA, Martins C (2008) Physical chromosome mapping of repetitive DNA sequences in Nile tilapia Oreochromis niloticus: evidences for a differential distribution of repetitive elements in the sex chromosomes. Micron 39:411–418. doi:10.1016/j.micron.2007.02.010 PubMedCrossRefGoogle Scholar
  10. Grewal SIS, Jia S (2007) Heterochromatin revised. Nat Rev Genet 8:35–46. doi:10.1038/nrg2008 PubMedCrossRefGoogle Scholar
  11. Gross MC, Schneider CH, Valente GT, Porto JIR, Martins C, Feldberg E (2009) Comparative cytogenetic analysis of the genus Symphysodon (Discus Fishes, Cichlidae): chromosomal characteristics of Retrotransposons and minor ribosomal DNA. Cytogenet Genome Res 127:43–53. doi:10.1159/000279443 PubMedCrossRefGoogle Scholar
  12. Gross MC, Schneider CH, Valente GT, Martins C, Feldberg E (2010) Variability of 18S rDNA locus among Symphysodon fishes: chromosomal rearrangements. J Fish Biol 76:1117–1127. doi:10.1111/j.1095-8649.2010.02550.x PubMedCrossRefGoogle Scholar
  13. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  14. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780PubMedCrossRefGoogle Scholar
  15. Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298. doi:10.1038/nrg1316 PubMedCrossRefGoogle Scholar
  16. Kornfield IL (1984) Descriptive genetics of cichlid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum Press, New York, pp 591–616CrossRefGoogle Scholar
  17. Kullander SO (1998) A phylogeny and classification of the South America Cichlidae (Teleostei: Perciformes). In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (eds) Phylogeny and classification of neotropical fishes. Editora da Pontifícia Universidade Católica, Porto Alegre, pp 461–498Google Scholar
  18. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. doi:10.1111/j.1601-5223.1964.tb01953.x CrossRefGoogle Scholar
  19. López-Fernández H, Honeycutt RL, Winemiller KO (2005) Molecular phylogeny and evidence for an adaptive radiation of geophagine cichlids from South America (Perciformes: Labroidei). Mol Phylogenet Evol 34:227–244. doi:10.1016/j.ympev.2004.09.004 PubMedCrossRefGoogle Scholar
  20. Lowe-McConnell RH (1991) Ecology of cichlids in South American and African waters, excluding the African Great Lakes. In: Keenleyside MHA (ed) Cichlid fishes: behavior, ecology and evolution. Chapman and Hall, London, pp 60–85Google Scholar
  21. Mandrioli M, Cuoghi BC, Marini M, Manicardi GC (1999) Localization of the (TTAGGG)n telomeric repeat in the chromosomes of the pufferfish Tetraodon fluviatilis (Hamilton Buchanan) (Osteichthyes). Caryologia 52:155–157CrossRefGoogle Scholar
  22. Martins C (2007) Chromosomes and repetitive DNA: a contribution to the knowledge of the fish genome. In: Pisano E, Ozouf-Costaz C, Foresti F, Kappor BG (eds) Fish cytogenetics. Science Publisher, Enfield, pp 421–453Google Scholar
  23. Martins C, Galetti PM (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosom Res 7:363–367CrossRefGoogle Scholar
  24. Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR (ed) Focus on genome research. Nova Science Publishers, Inc., Hauppauge, pp 335–363Google Scholar
  25. Martins C, Oliveira C, Wasko AP, Wrigh JM (2004) Physical mapping of the Nile tilapia (Oreochromis niloticus) genome by fluorescent in situ hybridization of repetitive DNAs to metaphase chromosomes a review. Aquaculture 231:37–49. doi:10.1016/j.aquaculture.2003.08.017 CrossRefGoogle Scholar
  26. Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM Jr (2006) A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 127:133–141. doi:10.1007/s10709-005-2674-y PubMedCrossRefGoogle Scholar
  27. Mazzuchelli J, Martins C (2009) Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus. Genetica 136:461–469. doi:10.1007/s10709-008-9346-7 PubMedCrossRefGoogle Scholar
  28. Mendonça MNC, Porto JIR, Feldberg E (1999) Ocorrência de três citótipos em Satanoperca aff. jurupari (Perciformes, Cichlidae) no Catalão, Manaus, AM. Genet Mol Biol 22:69CrossRefGoogle Scholar
  29. Mesquita DR, Porto JIR, Feldberg E (2008) Chromosomal variability in the wild ornamental fish Symphysodon spp. (Perciformes, Cichlidae) from Amazon. Neotrop Ichthyol 6:181–190. doi:10.1590/s1679-62252008000200005 CrossRefGoogle Scholar
  30. Nascimento AL, Souza ACP, Feldberg E, Carvalho JR, Barros RMS, Pieczarka JC, Nagamachi CY (2006) Cytogenetic analysis on Pterophyllum scalare (Perciformes, Cichlidae) from Jari River, Pará state. Caryologia 59:138–143Google Scholar
  31. Navajas-Pérez R, Schwarzacher T, Ruiz Rejón M, Garrido-Ramos MA (2009) Characterization of RUSI, a telomere-associated satellite DNA, in the genus Rumex (Polygonaceae). Cytogenet Genome Res 124:81–89. doi:10.1159/000200091 PubMedCrossRefGoogle Scholar
  32. Oliveira C, Chew JSK, Porto-Foresti F, Dobson MJ, Wright JM (1999) A LINE2 repetitive DNA sequence from the cichlid fish, Oreochromis niloticus: sequence analysis and chromosomal distribution. Chromosoma 108:457–468PubMedCrossRefGoogle Scholar
  33. Perazzo G, Noleto RB, Vicari MR, Machado PC, Gava A, Cestari MM (2011) Chromosomal studies in Crenicichla lepidota and Australoheros facetus (Cichlidae, Perciformes) from extreme Southern Brazil. Rev Fish Biol Fish 21:509–515. doi:10.1007/s11160-010-9170-x CrossRefGoogle Scholar
  34. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938PubMedCrossRefGoogle Scholar
  35. Poletto AB, Ferreira IA, Martins C (2010a) The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies. BMC Genet 11:1. doi:10.1186/1471-2156-11-1 PubMedCrossRefGoogle Scholar
  36. Poletto AB, Ferreira IA, Cabral-de-Mello DC, Nakajima RT, Mazzuchelli J, Ribeiro HB, Venere PC, Nirchio M, Kocher TD, Martins C (2010b) Chromosome differentiation patterns during cichlid fish evolution. BMC Genet 11:50–62. doi:10.1186/1471-2156-11-50 PubMedCrossRefGoogle Scholar
  37. Rocchi M, Archidiacono N, Schempp W, Capozzi O, Stanyon R (2012) Centromere repositioning in mammals. Heredity 108:59–67. doi:10.1038/hdy.2011.101 PubMedCrossRefGoogle Scholar
  38. Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci 102:5084–5089. doi:10.1073/pnas.0409689102 PubMedCrossRefGoogle Scholar
  39. Salgado SM, Feldberg E, Porto JIR (1995) Estudos citogenéticos em cinco espécies da família Cichlidae (Perciformes-Labroidei), da bacia amazônica central. Braz J Genet 18:463Google Scholar
  40. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Springs Harbor Laboratory Press, Cold Springs HarborGoogle Scholar
  41. Shampay J, Schmitt M, Bassham S (1995) A novel minisatellite at a cloned hamster telomere. Chromosoma 104:29–38. doi:10.1007/s004120050089 PubMedCrossRefGoogle Scholar
  42. Silva M, Matoso DA, Vicari MR, de Almeida MC, Margarido VP, Artoni RF (2011) Physical mapping of 5S rDNA in two species of Knifefishes: Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes). Cytogenet Genome Res 134:303–307. doi:10.1159/000328998 PubMedCrossRefGoogle Scholar
  43. Slijepcevic P (1998) Telomeres and mechanisms of Robertsonian fusion. Chromosoma 107:136–140. doi:10.1007/s004120050289 PubMedCrossRefGoogle Scholar
  44. Smith WL, Chakrabarty P, Sparks JS (2008) Phylogeny, taxonomy, and evolution of Neotropical cichlids (Teleostei: Cichlidae: Cichlinae). Cladistics 24:625–641. doi:10.1111/j.1096-0031.2008.00210.x CrossRefGoogle Scholar
  45. Sparks JS, Smith WL (2004) Phylogeny and biogeography of cichlid fishes (Teleostei: Perciformes: Cichlidae). Cladistics 20:501–517. doi:10.1111/j.1096-0031.2004.00038.x CrossRefGoogle Scholar
  46. Sumner AT (1972) A simple technique for demonstrating centromeric heterocromatin. Exp Cell Res 75:304–306. doi:10.1016/0014-4827(72)90558-7 PubMedCrossRefGoogle Scholar
  47. Sumner AT (2003) Chromosomes organization and function. Blackwell Publishing, MaldenGoogle Scholar
  48. Teixeira WG, Ferreira IA, Cabral-de-Mello DC, Mazzuchelli J, Valente GT, Pinhal D, Poletto AB, Venere PC, Martins M (2009) Organization of repeated DNA elements in the genome of the cichlid fish Cichla kelberi and its contributions to the knowledge of fish genomes. Cytogenet Genome Res 125:224–234. doi:10.1159/000230006 PubMedCrossRefGoogle Scholar
  49. Thompson KW (1979) Cytotaxonomy of 41 species of neotropical cichlidae. Copeia 4:679–691CrossRefGoogle Scholar
  50. Valente GT, Mazzuchelli J, Ferreira IA, Poletto AB, Fantinatti BEA, Martins C (2011) Cytogenetic mapping of the retroelements Rex1, Rex3 and Rex6 among cichlid cish: new insights on the chromosomal distribution of transposable elements. Cytogenet Genome Res 133:34–42. doi:10.1159/000322888 PubMedCrossRefGoogle Scholar
  51. Varriale A, Torelli G, Bernardi G (2008) Compositional properties and thermal adaptation of 18S rRNA in vertebrates. RNA 14:1492–1500. doi:10.1261/rna.957108 PubMedCrossRefGoogle Scholar
  52. Vicari MR, Artoni RF, Moreira-Filho O, Bertollo LAC (2006) Basic and molecular cytogenetics in freshwater cichlidae (Osteichthyes, Perciformes). Karyotypic conservationism and divergence. Caryologia 59:260–266Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Carlos Henrique Schneider
    • 1
  • Maria Claudia Gross
    • 2
  • Maria Leandra Terencio
    • 1
  • Roberto Ferreira Artoni
    • 3
  • Marcelo Ricardo Vicari
    • 3
  • Cesar Martins
    • 4
  • Eliana Feldberg
    • 1
  1. 1.Laboratório de Genética AnimalInstituto Nacional de Pesquisas da Amazônia (INPA)ManausBrazil
  2. 2.Laboratório de Citogenômica, Departamento de Biologia, Instituto de Ciências BiológicasUniversidade Federal do AmazonasManausBrazil
  3. 3.Laboratório de Citogenética e Evolução, Departamento de Biologia Estrutural, Molecular e GenéticaUniversidade Estadual de Ponta GrossaPonta GrossaBrazil
  4. 4.Laboratório de Genômica Integrativa, Departamento de Morfologia, Instituto de BiociênciasUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP)BotucatuBrazil

Personalised recommendations