Advertisement

Reviews in Fish Biology and Fisheries

, Volume 21, Issue 4, pp 649–666 | Cite as

Zebrafish as a model organism for nutrition and growth: towards comparative studies of nutritional genomics applied to aquacultured fishes

  • Pilar E. Ulloa
  • Patricia Iturra
  • Roberto Neira
  • Cristian Araneda
Reviews

Abstract

Zebrafish (Danio rerio) is a common research model in fish studies of toxicology, developmental biology, neurobiology and molecular genetics; it has been proposed as a possible model organism for nutrition and growth studies in fish. The advantages of working with zebrafish in these areas are their small size, short generation time (12–14 weeks) and their capacity to produce numerous eggs (100–200 eggs/clutch). Since a wide variety of molecular tools and information are available for genomic analysis, zebrafish has also been proposed as a model for nutritional genomic studies in fish. The detailed study of every species employed as a model organism is important because these species are used to generalize how several biological processes occur in related organisms, and contribute considerably toward improving our understanding of the mechanisms involved in nutrition and growth. The objective of this review is to show the relevant aspects of the nutrition and growth in zebrafish that support its utility as a model organism for nutritional genomics studies. We made a particular emphasis that gene expression and genetic variants in response to zebrafish nutrition will shed light on similar processes in aquacultured fish.

Keywords

Zebrafish Growth Nutrition Nutritional genomics Comparative genomics 

Notes

Acknowledgments

This work was supported by the following fellowships to PU: Conicyt AT-24091052 and Doctoral fellowship from the Consorcio Empresarial de Genética y Desarrollo Biotecnológico para la Industria Salmonera (Aquainnovo S.A.) and, Grant DI I2 04/05-2 Universidad de Chile to CA. The authors acknowledge the help of Daniela Romo and Francisco Estay (Piscicola Hulilco Ltda.) for your assistance in photography. PU also wishes to thank the Programa de Doctorado en Ciencias de Recursos Naturales of the Universidad de La Frontera. We are especially grateful to Rashida Lathan for the English editing in the final version of this work.

References

  1. Accini G (2009) Estimación de heredabilidad e identificación de marcadores RAPD asociados a tasa de crecimiento en zebrafish (Danio rerio). Tesis de Ingeniero Agrónomo, Facultad de Ciencias Agronómicas, Universidad de Chile, p 33Google Scholar
  2. Acosta J, Carpio Y, Borroto I, Gonzalez O, Estrada M (2005) Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J Biotechnol 119:324–331PubMedCrossRefGoogle Scholar
  3. Alami-Durante H, Médale F, Cluzeaud M, Kaushik S (2010a) Skeletal muscle growth dynamics and expression of related genes in white and red muscle of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture 303:50–58CrossRefGoogle Scholar
  4. Alami-Durante H, Wrutniak-Cabello C, Kaushik SJ, Médale F (2010b) Skeletal muscle cellularuty and expression of myogenic regulatory factors and myosin heavy chains in rainbow trout (Oncorhynchus mykiss): effects of changes in dietary plant protein sources and amino acid profiles. Comp Biochem Physiol A 156:561–568CrossRefGoogle Scholar
  5. Albertson R, Payne-Ferreira T, Postlethwait J, Yelick P (2005) Zebrafish acvr2a and acvr2b exhibit distinct roles in craniofacial development. Dev Dyn 233:1405–1418PubMedCrossRefGoogle Scholar
  6. Aleström P, Holter J, Nourizadeh-Lillabadi R (2006) Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol 24:15–21PubMedCrossRefGoogle Scholar
  7. Allendorf F, Thorgaard G (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner B (ed) Evolutionary genetics of fishes. Plenum Press, New York, pp 1–46Google Scholar
  8. Aparicio S, Chapman J, Stupka E, Putnam N, Chia J, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Sollewinjn Gelpke M, Roach J, Oh T, Ho IY, Wong M, Detter CH, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith S, Clark M, Edwards YJK, Doggett N, Zharkikh A, Tavtigian S, Pruss D, Barnstead M, Evans CH, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan H, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310PubMedCrossRefGoogle Scholar
  9. Araneda C, Neira R, Lam N, Iturra P (2008) Salmonids. In: Kocher TD, Kole C (eds) Genome mapping and genomics in fishes and aquatic animals. Springer-Verlag, Berlin, Heidelberg, pp 1–43CrossRefGoogle Scholar
  10. Atchley W, Fitch W, Bronnerfraser M (1994) Molecular evolution of the Myod family of transcription factors. Proc Natl Acad Sci USA 91:11522–11526PubMedCrossRefGoogle Scholar
  11. Barbazuk W, Korf I, Kadavi I, Heyen J, Tate S, Wun E, Bedell J, McPherson J, Johnson S (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358PubMedCrossRefGoogle Scholar
  12. Bell M (2001) Lateral plate evolution in the threespine stickleback: getting nowhere fast. Genetica 1:445–461CrossRefGoogle Scholar
  13. Bergeron S, Milla L, Villegas R, Shen M-C, Burgess S, Allende M, Palma V, Karlstrom R (2008) Expression profiling identifies novel Hh/Gli regulated genes in developing zebrafish embryos. Genomics 91:165–177PubMedCrossRefGoogle Scholar
  14. Biga P, Goetz F (2006) Zebrafish and giant danio as models for muscle growth: determinate versus indeterminate growth as determined by morphometric analysis. Am J Physiol Regul Integr Comp Physiol 291:1327–1337CrossRefGoogle Scholar
  15. Boulding EG, Culling M, Glebe B, Berg PR, Lien S, Moen T (2008) Conservation genomics of Atlantic salmon: SNPs associated with QTLs for adaptative traits in parr from four trans-Atlantic backcrosses. Heredity 101:381–391PubMedCrossRefGoogle Scholar
  16. Bower N, Li X, Taylor R, Johnston A (2008) Switching to fast growth: the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon. J Exp Biol 211:3859–3870PubMedCrossRefGoogle Scholar
  17. Bradley K, Elmore B, Breyer J, Yaspan B, Jessen J, Knapik E, Smith J (2007) A major zebrafish polymorphism resource for genetic mapping. Genome Biol 8:55–65CrossRefGoogle Scholar
  18. Breder C, Rosen D (1966) Modes of reproduction in fishes. The Natural History Press, New York, p 941Google Scholar
  19. Briggs J (2002) The zebrafish: a new model organism for integrative physiology. Am J Physiol Regul Integr Comp Physiol 282:R3–R9PubMedGoogle Scholar
  20. Brown M (1957) Experimental studies on growth. In: Brown M (ed) The physiology of fishes. Academic Press, New York, pp 261–400Google Scholar
  21. Carpio Y, Acosta J, Morales R, Santisteban Y, Sanchéz A, Estrada M (2009) Regulation of body mass growth through activin type IIB receptor in teleosts fish. Gen Comp Endocrinol 160:158–167PubMedCrossRefGoogle Scholar
  22. Carvalho A, Sá R, Oliva-Teles A, Bergot P (2004) Solubility and peptide profile affect the utilization of dietary protein by common carp (Cuprinus carpio) during early larval stages. Aquaculture 234:319–333CrossRefGoogle Scholar
  23. Carvalho A, Araujo L, Santos M (2006) Rearing zebrafish (Danio rerio) larvae without live food: evaluation of a commercial, a practical, and a purified starter diet on larval performance. Aquacult Res 37:1107–1111CrossRefGoogle Scholar
  24. Cenadelli S, Maran V, Bongioni G, Fusetti L, Parma P, Aleandri R (2007) Identification of nuclear SNPs in gilthead seabream. J Fish Biol 70:399–405CrossRefGoogle Scholar
  25. Chapalamadugu K, Robison B, Drew R, Powell M, Hill R, Amberg J, Rodnick K, Hardy R, Hill M, Murdoch G (2009) Dietary carbohydrate level affects transcription factor expression that regulates skeletal muscle myogenesis in rainbow trout. Comp Biochem Physiol B 153:66–72PubMedCrossRefGoogle Scholar
  26. Chauvigné F, Gabillard J, Weil C, Rescan P (2003) Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6 and myostatin mRNA expression in rainbow trout myotomal muscle. Gen Comp Endocrinol 132:209–215PubMedCrossRefGoogle Scholar
  27. Chen Y, Lee W, Liu C, Tsai H (2001) Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) Myf-5 gene. Genesis 29:22–35PubMedCrossRefGoogle Scholar
  28. Chen F, Lee Y, Jiang Y, Wang S, Peatman E, Abernathy J, Liu H, Liu SK, Kucuktas H, Ke CH, Liu Z (2010) Identification and characterization of Full-Length cDNAs in Channel Catfish (Ictalurus punctatus) and Blue Catfish (Ictalurus furcatus). Plos One 12e: 11543Google Scholar
  29. Clark M (2003) Genomics and mapping of teleostei. Comp Funct Genomics 4:182–193PubMedCrossRefGoogle Scholar
  30. Cossins A, Crawford D (2005) Fish as model for environmental genomics. Nat Rev Genet 6:324–340PubMedCrossRefGoogle Scholar
  31. Cowey C, Sargent J (1976) Lipid nutrition in fish. Comp Biochem Physiol 57B:269–273Google Scholar
  32. Cresko W, McGuigan K, Phillips P, Postlethwait J (2007) Studies of threespine stickleback developmental evolution: progress and promise. Genetica 129:105–126PubMedCrossRefGoogle Scholar
  33. Crollius H, Weissenbach J (2008) Fish genomics and biology. Genome Res 15:1675–1682CrossRefGoogle Scholar
  34. Dabrowski K, Hliwa P, Gomulka P, Sienicki M, Carvalho AP, Ostaszewska T, Terjesen B (2005) Studies on the utilization of free amino acid, casein-based, or commercial diets in rearing common carp larvae. Abstr of Aquac Am 344, New Orleans, USAGoogle Scholar
  35. Daga R, Thode G, Amores A (1996) Chromosome complement, C-banding, Ag-NOR and replication banding in the zebrafish Danio rerio. Chromosome Res 4:29–32PubMedCrossRefGoogle Scholar
  36. Dahm R (2002) Atlas of embryonic stages of development in the zebrafish. In: Nusslein-Volhard C, Dahm R (eds) Zebrafish: a practical approach. Oxford University Press, Oxford, pp 219–236Google Scholar
  37. Dahm R, Geisler R (2006) Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol 0:1–17Google Scholar
  38. Davidson W, Koop B, Jones S, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt S (2010) Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 11:403PubMedGoogle Scholar
  39. Davis GP, Hetzel DJ (2000) Integrating molecular genetics technology with traditional approaches for genetic improvement in aquaculture species. Aquacult Res 31:3–10CrossRefGoogle Scholar
  40. De-Santis C, Jerry D (2007) Candidate growth genes in finfish—Where should we be looking? Aquaculture 272:22–38CrossRefGoogle Scholar
  41. Dominik S, Henshall J, Kube P, King H, Lien S, Kent M, Elliott N (2010) Evaluation of an Atlantic salmon SNP chip as a genomic tool for the application in a Tasmanian Atlantic salmon (Salmo salar) breeding population. Aquaculture 308:S56–S61CrossRefGoogle Scholar
  42. Douglas S (2006) Microarray studies of genes expression in fish. J Integr Biol 10(4):474–489Google Scholar
  43. Drew R, Rodnick K, Settles M, Wacyk J, Churchill E, Powell M, Hardy R, Murdoch G, Hill R, Barrie R (2008) Effect of starvation on the transcriptomes of the brain and liver in adult female zebrafish. Physiol Genomics 35:283–295PubMedCrossRefGoogle Scholar
  44. Driever W, Stemple D, Schier A, Solnica-Krezel L (1994) Zebrafish: genetic tools for studying vertebrate development. Trends Genet 10:152–159PubMedCrossRefGoogle Scholar
  45. Du SH (2004) Molecular regulation of fish muscle development and growth. In: Gong Z, Korzh V (eds) Molecular aspects of fish and marine biology, volume 2, fish development and genetics the zebrafish and medaka models. World Scientific, Singapure, pp 581–611Google Scholar
  46. Dumas A, Frane J, Bureau D (2010) Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquacult Res 41:161–181CrossRefGoogle Scholar
  47. Dutta S (1993) Food and feeding habits of Danio rerio (Ham. Buch.) inhabiting gadigarh stream, Jammu. J Freshw Biol 5:165–168Google Scholar
  48. Eaton R, Farley R (1974a) Spawning cycle and egg production of zebrafish, Brachydanio rerio, in the laboratory. Copeia 1:195–204CrossRefGoogle Scholar
  49. Eaton R, Farley R (1974b) Growth and the reduction of depensation of zebrafish, Brachedanio rerio reared in the laboratory. Copeia 1:204–209CrossRefGoogle Scholar
  50. Ehrlich J, Sankoff D, Nadeau J (1997) Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147:289–296PubMedGoogle Scholar
  51. Erbay E, Park I, Nuzzi P, Schoenherr C, Chen J (2003) IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. J Cell Biol 163:931–936PubMedCrossRefGoogle Scholar
  52. Estay F, Cerisola H, Téllez V (1994) Biologia del desarrollo y reproducción artificial en la trucha arcoíris. Publicación del grupo de investigación de la Universidad de Chile, Universidad Católica de Valparaíso y del Instituto Fomento Pesquero, Chile, pp 1–28Google Scholar
  53. Falconer D, MacKay T (1996) Introduction to quantitative genetics. Longman Group Ltda, Malasia, p 464Google Scholar
  54. Fiogbé E, Kestemont P (1995) An assessment of the protein and amino acid requirement in goldfish (Carassius auratus) larvae. J Appl Ichthyol 11:282–289CrossRefGoogle Scholar
  55. Fjalestad KT, Moen T, Gomez-Raya L (2003) Prospects for genetic technology in salmon breeding programmes. Aquacult Res 34:397–406CrossRefGoogle Scholar
  56. Franch R, Louro B, Tsalavouta M, Chatziplis D, Tsigenopoulos S, Sorropoulou E, Antonello J, Magoulas A, Mylonas C, Babbucci M, Patarnello T, Power D, Kotoulas G, Bargelloni L (2006) A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Genetics 174:851–861PubMedCrossRefGoogle Scholar
  57. Froystad M, Lilleeng E, Bakke-Mckellep A, Vekterud K, Hemre G, Krogdahl A (2008) Gene expression in distal intestine of Atlantic salmon (Salmo salar L.) fed genetically modified soybean meal. Aquacult Nutr 14:204–214CrossRefGoogle Scholar
  58. Froystad M, Lilleeng E, Bakke-Mckellep A, Vekterud K, Valen E, Hemre G, Krogdahl A (2009) Distal intestinal gene expression in Atlantic salmon (Salmo salar L.) fed genetically modified maize. Aquacult Nutr 15:104–115CrossRefGoogle Scholar
  59. German D, Horn M (2006) Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Mar Biol 148:1123–1134CrossRefGoogle Scholar
  60. Goll D, Thompson V, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801PubMedGoogle Scholar
  61. Goolish E, Okutake K, Lesure S (1999) Growth and Survivorship of larval zebrafish Danio rerio on processed diets. N Am J Aquacult 61:189–198CrossRefGoogle Scholar
  62. Gornung E, Gabrielli I, Cataudella S, Sola L (1997) CMA3—banding pattern and fluorescence in situ hybridization with 18S rRNA genes in zebrafish chromosomes. Chromosome Res 5:40–46PubMedCrossRefGoogle Scholar
  63. Govoroun M, Le Gac F, Guiguen Y (2006) Generation of a large scale repertoire of Expressed Sequence Tags (ESTs) from normalized rainbow trout cDNA libraries. BCM Genomics 7:196CrossRefGoogle Scholar
  64. Grunwald D, Eisen J (2002) Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet 3:717–724PubMedCrossRefGoogle Scholar
  65. Hahlbeck E, Katsiadaki I, Mayer I, Adolfsson-Erici M, James J, Bengtsson B (2004) The juvenile three-spined stickleback (Gasterosteus aculeatus L.) as a model organism for endocrine disruption II-kidney hypertrophy, vitellogenin and spiggin induction. Aquat Toxicol 70:311–326PubMedCrossRefGoogle Scholar
  66. Hardy R (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquacult Res 41:770–776CrossRefGoogle Scholar
  67. Hayes B, Laerdahl JK, Lien S, Moen T, Berg P, Hindar K, Davison WS, Koop BF, Adzhubei A, Hoyheim B (2007) An extensive resources of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences. Aquaculture 265:82–90CrossRefGoogle Scholar
  68. Hedges S (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–843PubMedCrossRefGoogle Scholar
  69. Helterline D, Garikipati D, Stenkamp D, Rodgers D (2006) Embryonic and tissue-specific regulation of myostatin-1 and-2 gene expression in zebrafish. Gen Comp Endocrinol 151(1):90–97CrossRefGoogle Scholar
  70. Hinegardner R, Rosen DE (1972) Cellular DNA content and the evolution of teleostean fishes. Am Nat 106:621–644CrossRefGoogle Scholar
  71. Hinits Y, Osborn D, Carvajal J, Rigby P, Hughes M (2007) Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expr Patterns 7:738–745PubMedCrossRefGoogle Scholar
  72. Horn M, Gawlicka A, German D, Logothetis E, Cavanagh J, Boyle K (2006) Structure and function of the stomachless digestive system in three related species of New World silverside fishes (Atherinopsidae) representing herbivory, omnivory, and carnivory. Mar Biol 149:1237–1245CrossRefGoogle Scholar
  73. Huising M, Geven E, Kruiswijk C, Nabuurs S, Stolte E, Spanings F, Verburg-van Kemenade B, Flik G (2006) Increased leptin expression in common carp (Cyprinus carpio) after food intake but not after fasting or feeding to satiation. Endocrinology 147:5786–5797PubMedCrossRefGoogle Scholar
  74. Janvier P (1996) Early vertebrates. Oxford Science Publications, Clarendon Press, New York 375Google Scholar
  75. Johansen K, Overturf K (2005) Sequence, conservation, and quantitative expression of rainbow trout Myf-5. Comp Biochem Physiol B: Biochem Mol Biol 140:533–541CrossRefGoogle Scholar
  76. Johansen S, Coucheron D, Andreassen M, Ove Karlsen B, Furmanek T, Jorgensen T, Emblem A, Breines R, Nordeide J, Moun T, Nederbragt A, Stenseth N, Jakobsen K (2009) Large-scale sequence analyses of Atlantic cod. New Biotechnol 25:263–271CrossRefGoogle Scholar
  77. Johnson R, Johnson T, Londraville R (2000) Evidence for leptin expression in fishes. J Exp Zool A: Comp Exp Biol 286:718–724CrossRefGoogle Scholar
  78. Johnston I (1999) Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177:99–115CrossRefGoogle Scholar
  79. Johnston I, Macqueen D, Watabe S (2008) Molecular biotechnology of development and growth in fish muscle. In: Tsukamoto K, Kawamura T, Takeuchi T, Douglas Beard T, Kaiser M (eds) Fisheries for global welfare and environment. 5th World Fisheries Congress, Scotland, pp 241–262Google Scholar
  80. Kaput J, Rodriguez RL (2003) Nutritional Genomics: the next frontier in the postgenomic era. Physiol Genomics 16:166–177CrossRefGoogle Scholar
  81. Kasahara M, Naruse K, Sasaki SH, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shamida A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa SH, Shimizu N, Hashimoto SH, Jun Yang, Lee Y, Matsushima K, Sugano S, Sakaisumi M, Takanori N, Ohishi K, Haga SH, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita SH, Kohara Y (2007) The medaka draft genome and insigts into vertebrate genome evolution. Nature 447:714–719PubMedCrossRefGoogle Scholar
  82. Katsiadaki I, Scott AP, Mayer I (2002) The potential of the three-spined stickleback (Gasterosteus aculeatus L.) as a combined biomarker for oestrogens and androgens in European waters. Mar Environ Res 54:725–728PubMedCrossRefGoogle Scholar
  83. Kimmel C, Ballard W, Kimmel S, Ullmann B, Schilling T (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  84. Kobiyama A, Nihei Y, Hirayama Y, Kikuchi K, Suetake H, Johnston I, Watabe S (1998) Molecular cloning and developmental expression patterns of the MyoD and MEF2 families of muscle transcription factors in the carp. J Exp Biol 201:2801–2813Google Scholar
  85. Kurokawa T, Uji S, Suzuki T (2005a) Identification of pepsinogen gene in the genome of stomachless fish. Takifugu rubripes Comp Biochem and Physiol Part B: Biochem Mol Biol 140:133–140CrossRefGoogle Scholar
  86. Kurokawa T, Uji S, Suzuki T (2005b) Identification of cDNA coding for a homologue to mammalian leptin from pufferfish, Takifugu rubripes. Peptides 26:745–750PubMedCrossRefGoogle Scholar
  87. Lauder G, Liem K (1989) The evolution and interrelationships of the Actinopterygian fishes. Bull Mus Comp Zool 150:95–187Google Scholar
  88. Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269:1–20CrossRefGoogle Scholar
  89. Lee S, McPherron A (2001) Regulation of myostatin activity and muscle growth. PNAS 16:9306–9311CrossRefGoogle Scholar
  90. Leong J, Jantzen S, Von Schalburg K, Cooper G, Messmer A, Liao N, Munro S, Moore R, Holt R, Jones S, Davison W, Koop B (2010) Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. BCM Genomics 11:279CrossRefGoogle Scholar
  91. Li P, Peatman E, Wang SH, Feng J, He CH, Baoprsertkul P, Xu P, Kucuktas H, Nandi S, Somridhivej B, Serapion J, Simmons M, Turan C, Liu L, Muir W, Dunham R, Brady Y, Grizzle J, Liu Z (2007) Towards the ictalurid catfish transcriptome: generation and analysis of 31, 215 catfish ESTs. BCM Genomics 8:117CrossRefGoogle Scholar
  92. Lilleeng E, Froystad M, Ostby G, Valen E, Krogdahl A (2007) Effects of diet containing soybean meal on trypsin mRNA expression and activity in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol Part A: Mol Integr Physiol 147:25–36CrossRefGoogle Scholar
  93. Liu Z, Cordes J (2004) DNA marker technologies and their applicationsin aquaculture genetics. Aquaculture 238:1–37CrossRefGoogle Scholar
  94. Liu H, Jiang Y, Wang SH, Ninwichian P, Somridhivej B, Xu P, Abernathy J, Kucuktas H, Liu Z (2009) Comparative analysis of catfish BAC end sequences with the zebrafish genome. BCM Genomics 10:592CrossRefGoogle Scholar
  95. Lo Pestri R, Lisa C, Di Stasio L (2009) Molecular genetics in aquaculture. Ital J of Anim Sci 8:299–313Google Scholar
  96. Lochman R, Phillips H (1996) Nutrition and feeding of baitfish. Aquacult Mag 4:87–89Google Scholar
  97. Lu J, Peatman E, Yang Q, Wang SH, Hu Z, Reecy J, Kucuktas H, Liu Z (2010) The catfish genome database cBARBEL: an informatics platform for genome biology of ictalurid catfish. Nucleic Acids Res 39:D815–D821PubMedCrossRefGoogle Scholar
  98. Maccatrozzo L, Bargelloni L, Cardazzo B, Rizzo G, Patarnello T (2001) A novel second myostatin gene is present in teleost fish. FEBS Lett 509:36–40PubMedCrossRefGoogle Scholar
  99. Macqueen D, Johnston I (2008) Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses. Dev Genes Evol 218:1–14PubMedCrossRefGoogle Scholar
  100. Marti M, Moreno-Aliaga M, Zulet A, Martinez J (2005) Avances en nutrición molecular: nutrigenómica y nutrigenética. Nutr Hosp 3:157–164Google Scholar
  101. McClure M, McIntyre P, McCune A (2006) Notes on the natural diet and habitat of eight danioin fishes, including the zebrafish Danio rerio. J Fish Biol 69:553–570CrossRefGoogle Scholar
  102. McPherron A, Lawler A, Lee S (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90PubMedCrossRefGoogle Scholar
  103. Meinelt T, Schultz C, Worth M, Kurzinger H, Steinberg C (1999) Dietary fatty acid composition influences the fertilization rate of zebrafish (Danio rerio Hamilton-Buchanon). J Appl Ichthyol 15:19–23CrossRefGoogle Scholar
  104. Meinelt T, Schultz C, Worth M, Kurzinger H, Steinberg C (2000) Correlation of diets high in n6-polyunsaturated fatty acids with high growth rate in zebrafish (Danio rerio). Comp Med 50:43–45PubMedGoogle Scholar
  105. Meli R, Prasad A, Patowary A, Lalwani K, Maini J, Sharma M, Singh A, Kumar G, Jadhav V, Scaria V, Sivasubbu S (2008) FishMap: a community resource for zebrafish genomics. Zebrafish 5:125–130PubMedCrossRefGoogle Scholar
  106. Metscher B, Ahlberg P (1999) Zebrafish in context: uses of a laboraty model in comparative studies. Dev Biol 210:1–4PubMedCrossRefGoogle Scholar
  107. Moen T, Hayes B, Baranski M, Berg P, Kjoglum S, Koop B, Davidson W, Omholt S, Lien S (2008a) A linkage map of the Atlantic salmon (Salmo salar) based on EST-derived SNP markers. BCM Genomics 9:223–237CrossRefGoogle Scholar
  108. Moen T, Hayes B, Nilsen F, Delghandi M, Fjalestad K, Fevolden SE, Berg PR, Lien S (2008b) Identification and characterization of novel SNP markers in Atlantic cod: evidence for directional selection. BMC Genetics 9:18PubMedCrossRefGoogle Scholar
  109. Mommsen T (2001) Paradigms of growth in fish. Comp Biochem Physiol B 129:207–219PubMedCrossRefGoogle Scholar
  110. Moriyama S, Ayson F, Kawauchi H (2000) Growth regulation by insulin-like growth factor-I in fish. Biosci Biotechnol Biochem 64(8):1553–1562PubMedCrossRefGoogle Scholar
  111. Moyle P, Cech J (2000) Fishes. An introduction to ichthyology. Prentice Hall Inc., USA, p 612Google Scholar
  112. Müller M, Kersten S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4:315–322PubMedCrossRefGoogle Scholar
  113. Mutch M, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. The FASEB J 19:1602–1615CrossRefGoogle Scholar
  114. Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gen map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828PubMedCrossRefGoogle Scholar
  115. Nielsen E, Hansen M, Meldrup D (2006) Evidence of microsatellite hitch-hiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms. Mol Ecol 15:3219–3229PubMedCrossRefGoogle Scholar
  116. NRC National Research Council (1993) Nutrient requeriments of coldwater fishes. National Academy of Science, Washington, DC USA 63Google Scholar
  117. Ojima Y (1983) Fish cytogenetics. Suiko-sha, Tokyo, Japan 453Google Scholar
  118. Orban L, Wu Q (2008) Cyprinids. In: Kocher TD, Kole C (eds) Genome mapping and genomics in fishes and aquatic animal, volume 2. Springer-Verlag, Berlin, Heidelberg, pp 45–97CrossRefGoogle Scholar
  119. Ostbye T, Bardal T, Vegusdal A, Frang O, Kjorsvik E, Andersen O (2007) Molecular cloning of the Atlantic salmon activin receptor IIB cDNA-Localization of the receptor and myostatin in vivo and in vitro in muscle cells. Comp Biochem Physiol 2:101–111Google Scholar
  120. Panserat S, Kaushik S (2010) Regulation of gene expression by nutritional factors in fish. Aquacult Res 41:751–762CrossRefGoogle Scholar
  121. Panserat S, Kirchner S, Kaushik S (2007) Nutrigenomics. In: Nakagawa H, Sato M, Gatlin D III (eds) Dietary supplements for the health and quality of cultured fish. CAB International North America, USA, pp 210–229CrossRefGoogle Scholar
  122. Panserat S, Ducasse-Cabanot S, Plagnes-Juan E, Srivastava P, Kolditz C, Piumi F, Esquerré D, Kaushik S (2008) Dietary fat level modifies the expression of hepatic genes in juvenile rainbow trout (Oncorhynchus mykiss) as revealed by microarray analysis. Aquaculture 275:235–241CrossRefGoogle Scholar
  123. Phillips D, Krestor D (1998) Follistatin: a multifunctional regulatory protein. Front Neuroendocrinol 19:287–322PubMedCrossRefGoogle Scholar
  124. Postlethwait J (2004) Evolution of the zebrafish genome. In: Gong Z, Korzh V (eds) Molecular Aspects of Fish and Marine Biology, volume 2, fish development and genetics the zebrafish and medaka models. World Scientific, Singapure, pp 581–611CrossRefGoogle Scholar
  125. Quinn N, Levenkova N, Chow W, Bouffard P, Boroevich K, Knight J, Jarvie T, Lubieniecki K, Desany B, Koop B, Harkins T, Davidson W (2008) Assessing the feasibility of GS FLX Pyrosequencing for sequencing the Atlantic salmon genome. BMC Genomics 9:404PubMedCrossRefGoogle Scholar
  126. Rebbapragada A, Benchabane H, Wrana J, Celeste A, Attisano L (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23:7230–7242PubMedCrossRefGoogle Scholar
  127. Reid DP, Santo A, Glebe B, Danzmann RG, Ferguson M (2005) QTL for body weight and condition factor in Atlantc salmon (Salmo salar): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Artic charr (Salvelinus alpinus). Heredity 94:166–172PubMedCrossRefGoogle Scholar
  128. Rexroad CE III, Lee Y, Keele JW, Karamycheva S, Brown G, Koop B, Gahr SA, Palti Y, Quackenbush J (2003) Sequence analysis of a rainbow trout cDNA library and creation of a gene index. Cytogenet Genome Res 102:347–354PubMedCrossRefGoogle Scholar
  129. Rexroad C III, Rodriguez M, Coulibaly I, Gharbi K, Danzmann R, DeKoning J, Phillips R, Palti Y (2005) Comparative mapping of expressed sequence tags containing microsatellites in rainbow trout (Oncorhynchus mykiss). BCM Genomics 6:54–62CrossRefGoogle Scholar
  130. Rexroad C III, Palti Y, Gahr S, Vallejo R (2008) A second generation genetic map for rainbow trout (Oncorhynchus mykiss). BCM Genet 9:74–88Google Scholar
  131. Ricker, W (1958) Hanbook of computations for biological statistics of fish populations. Bull Fish Res Bd Canada, p 300Google Scholar
  132. Robison B, Drew R, Murdoch G, Powell M, Rodnick K, Settles M, Stone D, Churchill E, Hill R, Papasani M, Lewis S, Hardy R (2008) Sexual dimorphism in hepatic gene expression and the response to dietary carbohydrate manipulation in the zebrafish (Danio rerio). Comp Bichem Physiol Part D 2:141–154Google Scholar
  133. Roush W (1996) Zebrafish embryology builds a better model vertebrate. Science 272:1103PubMedCrossRefGoogle Scholar
  134. Rust M (2002) Nutritional physiology. In: Halver J, Hardy R (eds) Fish nutrition, 3rd edn. Academic press, USA, pp 368–446Google Scholar
  135. Ryynänen HJ, Primmer C (2006) Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantc salmon (salmo salar) and other salmon fishes. BCM Genomics 7:192CrossRefGoogle Scholar
  136. Salem M, Nath J, Rexroad C, Killefer J, Yao J (2005a) Identification and molecular characterization of the rainbow trout calpains (Capn1 and Calp2): their expression in muscle wasting during starvation. Comp Biochem Physiol B: Biochem Mol Biol 140:63–71CrossRefGoogle Scholar
  137. Salem M, Yao J, Rexroad C, Kenney P, Semmens K, Killefer J, Nath J (2005b) Characterization of calpastatin gene in fish: its potential role in muscle growth and fillet quality. Comp Biochem Physiol B: Biochem Mol Biol 141:488–497CrossRefGoogle Scholar
  138. Salem M, Silverstein J, Rexroad C III, Yao J (2007) Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BCM Genomics 8:328–344CrossRefGoogle Scholar
  139. Santigosa E, Sánchez J, Médale F, Kaushik S, Peréz-Sánchez J, Gallardo M (2008) Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 282:68–74CrossRefGoogle Scholar
  140. Santos M, Micael J, Carvalho A, Morabito R, Booy P, Massanisso P, Lamoree M, Reis-Henriques M (2006) Estrogens counteract the masculinizing efect of tributyltin in zebrafish. Comp Biochem and Physiol C: Toxicol Pharmacol 142:151–155CrossRefGoogle Scholar
  141. Sarropoulou E, Power DM, Magoulas A, Geisler R, Kotoulas G (2005) Comparative analysis and characterization of expressed sequence tags in gilthead sea bream (Sparus aurata) liver and embryos. Aquaculture 243:69–81CrossRefGoogle Scholar
  142. Sarropoulou E, Franch R, Louro B, Power D, Bargelloni L, Magoulas AN, Senger F, Tsalavouta M, Patarnello T, Galibert F, Kotoulas G, Geisler R (2007) A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis. BCM Genomics 8:44CrossRefGoogle Scholar
  143. Seiliez I, Gabillard J, Skiba-Cassy S et al (2008) An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Onchorinchus mykiss). Am J Physiol Regul Integr Comp Physiol 295:329–335CrossRefGoogle Scholar
  144. Senger F, Priat C, Hitte CH, Sarropoulou E, Franch R, Geisler R, Bargelloni L, Power D, Galibert F (2006) The first radiation hybrid map of perch-like fish: the gilthead seabream (Sparus aurata L.). Genomics 87:793–800PubMedCrossRefGoogle Scholar
  145. Smith C, Elfstrom C, Seeb L, Seeb J (2005) Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon. Mol Ecol 14:4193–4203PubMedCrossRefGoogle Scholar
  146. Spence R, Fatema M, Ellis S, Ahmed Z, Smith C (2007) Diet, growth and recruitment of wild zebrafish in Bangladesh. J Fish Biol 71:304–309CrossRefGoogle Scholar
  147. Stickney H, Schmutz J, Woods I, Holtzer C, Dickson M, Kelly P, Myers R, Talbot W (2002) Rapid mapping of zebrafish mutations with SNPs and oligonuleotide microarrays. Genome Res 12:1929–1934PubMedCrossRefGoogle Scholar
  148. Tan X, Hoang L, Du S (2002) Characterization of muscleregulatory genes, Myf5 and myogenin, from striped bass and promoter analysis of muscle-specific expression. Mar Biotechnol 4:537–545PubMedCrossRefGoogle Scholar
  149. Tave D (1993) Genetics for fish hatchery managers. An AVI book, New York, p 415Google Scholar
  150. Thorsen J, Zhu B, Frengen E, Osoegawa K, Jong PJ, Koop BF, Davidson W, Hoyheim B (2005) A highly redundant BAC library of Atlantic salmon (Salmo salar): an important tool for salmon projects. BCM Genomics 6:50CrossRefGoogle Scholar
  151. Turchini G, Torstensen B, Ng W-K (2009) Fish oil replacement in finfish nutrition. Rev Aquacult 1:10–57CrossRefGoogle Scholar
  152. Vignal A, Milan D, San Cristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305PubMedCrossRefGoogle Scholar
  153. Volff J (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294PubMedCrossRefGoogle Scholar
  154. Von Hertell U, Hörstgen-Schwarrk G, Langholz H, Jung B (1990) Family studies on genetic variability in growth and reproductive performance between and within test fish populations of the zebrafish, Brachydanio rerio. Aquaculture 85:307–315CrossRefGoogle Scholar
  155. Wang Y, Li C, Lee G, Tsay H, Tsai H, Chen Y (2008) Inactivation of zebrafish mrf4 leads to myofibril misalignment and motor axon growth disorganization. Dev Dyn 237:1043–1050PubMedCrossRefGoogle Scholar
  156. Wang S, Peatman E, Abernathy J, Waldbieser G, Lindquist E, Richardson P, Lucas S, Wang M, Li P, Thimmapuram J, Liu L, Vullaganti D, Kucuktas H, Murdock CH, Small B, Wilson M, Liu H, Jiang Y, Lee Y, Chen F, Lu J, Wang W, Xu P, Somridhivej B, Baoprasertkul P, Quilang J, Sha Z, Bao B, Wang Y, Wang Q, Takano T, Nandi S, Liu S, Wong L, Kaltenboeck L, Quiniou S, Bengten E, Miller N, Trant J, Rockhsar D, Liu Z, The Catfish Genome Consortium (2010) Assembly of 500, 000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies. Genome Biol 11:R8PubMedCrossRefGoogle Scholar
  157. Watanabe T (1981) Lipid nutrition in fish. Comp Biochem Physiol B 73:3–15CrossRefGoogle Scholar
  158. Watanabe T, Kitajima C, Fujita S (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34:115–145CrossRefGoogle Scholar
  159. Wegrzyn D, Ortubay S (2009) Salmonidos en patagonia, volumen 1. Mar del plata, Argentina, p 164Google Scholar
  160. Wesmajervi MS, Tafese T, Stenvik J, Fjalested KT, Damsgard B, Delghandi M (2007) Eight new microsatellite markers in Atlantic cod (Gadus morhua L.) derived from an enriched genomic library. Mol Ecol 7:138–140Google Scholar
  161. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene, Oregon USA, p 385Google Scholar
  162. Wittbrodt J, Shima A, Schartl M (2002) Medaka—a model organism from the far east. Nat Rev Genet 3:53–64PubMedCrossRefGoogle Scholar
  163. Woods G, Wilson C, Friedlander B, Chang P, Reyes K, Nix R, Kelly D, Chu F, Postlethwait H, Talbot W (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307–1314PubMedCrossRefGoogle Scholar
  164. Wright D, Nakamichi R, Krause J, Butlin R (2006) QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 36:271–284PubMedCrossRefGoogle Scholar
  165. Xu P, Wang SH, Liu L, Thorsen J, Kukuktas H, Liu Z (2007) A BAC-based physical map of the channel catfish genome. Genomics 90:380–388PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pilar E. Ulloa
    • 1
    • 3
  • Patricia Iturra
    • 2
  • Roberto Neira
    • 3
    • 4
  • Cristian Araneda
    • 3
  1. 1.Departamento de Ciencias Químicas, Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ciencias Ingeniería y AdministraciónUniversidad de La FronteraTemucoChile
  2. 2.Programa de Genética Humana, ICBM, Facultad de MedicinaUniversidad de ChileSantiagoChile
  3. 3.Departamento de Producción Animal, Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
  4. 4.AQUAINNOVO S.A.Puerto MonttChile

Personalised recommendations