Advertisement

Reviews in Fish Biology and Fisheries

, Volume 21, Issue 3, pp 527–541 | Cite as

Facts and uncertainties about the genetic population structure of Atlantic bluefin tuna (Thunnus thynnus) in the Mediterranean. Implications for fishery management

  • Jordi ViñasEmail author
  • Ana Gordoa
  • Raquel Fernández-Cebrián
  • Carles Pla
  • Ünal Vahdet
  • Rosa M. Araguas
Research Paper

Abstract

The Atlantic bluefin tuna (Thunnus thynnus) is an extraordinary fish that has amazed humanity since ancient times. However, the continuous overexploitation of this fishery, particularly in the Mediterranean Sea, could result in a total collapse of this resource. Currently, this species is managed as two stocks: Western Atlantic and Mediterranean-Eastern Atlantic, with a recognized genetic differentiation between them. On the other hand, the population structure within the Mediterranean Sea is still unclear. The biological data supports the idea of two separate populations in the eastern and western Mediterranean basins. However, nuclear microsatellite and mitochondrial DNA (mtDNA) analyses of two samples representative of these two basins result in a lack of heterogeneity. A comparison of these results with previously published studies reveals some discrepancies. We have compared 59 genetic differentiation tests that include samples within the Mediterranean. Of these, about 60% gave significant differentiation while the remaining 40% were non-significant. But, when only nuclear-based loci were considered, genetic differentiation was detected in up to 73% of the cases with an average significant F ST of only 0.018, whereas the average significant F ST of the mtDNA-based studies was significantly higher (0.029). However, in some cases, it is difficult to reconcile the biology of the species with the results suggesting genetic differentiation. In conclusion, although it is not yet possible to reach a definitive conclusion about the population structure, but considering all biological and genetic data, we suggest an independent management approach for each basin to avoid the impact of a type II error that could lead to the possible loss of the regional subpopulations.

Keywords

Atlantic bluefin tuna Genetic population structure Mediterranean Sea Fishery management Thunnus thynnus 

Notes

Acknowledgments

The work was partially supported to AG by The Cooperation Research Project between the Spanish Research Council (CSIC) and Balfego S.L. We also thank Dra. Nuri Sanz and Dr. Oriol Vidal for helpful comments on the manuscript and Begonya Mèlich and Francesca Rivas for technical support. We also appreciate the suggestions made by the editor, Jennifer Nielsen, and two anonymous referees for improving previous versions of this manuscript.

Supplementary material

11160_2010_9174_MOESM1_ESM.doc (80 kb)
Supplementary material 1 (DOC 80 kb)

References

  1. Allendorf FW, Phelps SR (1981) Use of allelic frequencies to describe population-structure. Can J Fish Aquat Sci 38:1507–1514CrossRefGoogle Scholar
  2. Alvarado Bremer J, Mejuto J, Gómez-Márquez J, Boan F, Carpintero P, Rodríguez JM, Viñas J, Greig TW, Ely B (2005a) Hierarchical analyses of genetic variation of samples from breeding and feeding grounds confirm the genetic partitioning of northwest Atlantic and south Atlantic populations of swordfish (Xiphias gladius L.). J Exp Mar Biol Ecol 327:167–182CrossRefGoogle Scholar
  3. Alvarado Bremer JR, Viñas J, Mejuto J, Ely B, Pla C (2005b) Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol Phylogenet Evol 36:169–187PubMedCrossRefGoogle Scholar
  4. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  5. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraespecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  6. Block BA, Teo SL, Walli A, Boustany A, Stokesbury MJ, Farwell CJ, Weng KC, Dewar H, Williams TD (2005) Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434:1121–1127PubMedCrossRefGoogle Scholar
  7. Boustany AM, Reeb CA, Block BA (2008) Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus). Mar Biol 156:13–24CrossRefGoogle Scholar
  8. Broughton RE, Gold JR (1997) Microsatellite development and survey of variation in northern bluefin tuna (Thunnus thynnus). Mol Mar Biol Biotechnol 6:308–314Google Scholar
  9. Carlsson J, McDowell JR, Díaz-Jaimes P, Carlsson JEL, Boles SB, Gold JR, Graves JE (2004) Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean sea. Mol Ecol 13:3345–3356PubMedCrossRefGoogle Scholar
  10. Carlsson J, McDowell JR, Carlsson JEL, Olasdottir D (2006) Genetic heterogeneity of Atlantic bluefin tuna caught in the eastern North Atlantic Ocean south of Iceland. ICES J Mar Sci 63:1111–1117Google Scholar
  11. Carlsson J, McDowell JR, Carlsson JEL, Graves JE (2007) Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J Hered 98:23–28PubMedCrossRefGoogle Scholar
  12. Carvalho GR, Hauser L (1994) Molecular-genetics and the stock concept in fisheries. Rev Fish Biol Fish 4:326–350CrossRefGoogle Scholar
  13. Corriero A, Desantis S, Deflorio M, Acone F, Bridges CR, De Serna JM, Megalofonou P, De Metrio G (2003) Histological investigation on the ovarian cycle of the bluefin tuna in the western and central Mediterranean. J Fish Biol 63:108–119CrossRefGoogle Scholar
  14. Corriero A, Karakulak S, Santamaria N, Deflorio M, Spedicato D, Addis P, Desantis S, Cirillo F, Fenech-Farrugia A, Vassallo-Agius R, de la Serna JM, Oray Y, Cau A, Megalofonou P, De Metrio G (2005) Size and age at sexual maturity of female bluefin tuna (Thunnus thynnus L. 1758) from the Mediterranean sea. J Appl Ichthyol 21:483–486CrossRefGoogle Scholar
  15. de la Serna JM, Alot E (1992) Análisis del sex-ratio por clase de talla y otros datos sobre la madurez sexual del atún rojo (Thunnus thynnus L.) en el Atlántico este y Mediterráneo. ICAAT Coll Vol Sci Pap 52:784–792Google Scholar
  16. De Metrio G, Arnold GP, de la Serna JM, Block BA, Megalofonou P, Lutcavage M, Oray IK, Deflorio M (2005) Movements of bluefin tuna (Thunnus thynnus L.) tagged in the Mediterranean sea with pop-up satellite tags. ICAAT Coll Vol Sci Pap 58:1337–1340Google Scholar
  17. DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473CrossRefGoogle Scholar
  18. Di Natale A, Mangano A, Asaro B, Bacone B, Celona A, Valastro M (2005) Bluefin tuna (Thunnus thynnus L.) catch composition in the Tyrrhenian sea and in the straits of Sicily in 2002 and 2003. ICAAT Coll Vol Sci Pap 58:1296–1336Google Scholar
  19. Dicenta A (1977) Zonas de puesta del atún (Thunnus thynnus L.) y otros túnidos en el mediterráneo occidental y primer intento de evaluación del stock de reproductores de atún. Bol Instit Esp Oceano 234:109–135Google Scholar
  20. Duclerc J, Piccinetti-Manfrin G, Piccinetti C, Dicenta A, Barrois JM (1974) New data on the reproduction of the red tunny and other species of thunnidae in the mediterranean. Rapport Procès-Verbaux des Réunions de la Commission International de l’Exploration Scientifique de la Mer Mediterrané 22:7–37Google Scholar
  21. Edmunds PH, Sammons JI (1971) Genic polymorphism of tetrazolium oxidase in bluefin tuna, Thunnus thynnus, from western north Atlantic. J Fish Res Board Can 28:1053–1055CrossRefGoogle Scholar
  22. Edmunds PH, Sammons JI (1973) Similarity of genic polymorphism of tetrazolium oxidase in bluefin tuna (Thunnus thynnus) from Atlantic coast of France and western north Atlantic. J Fish Res Board Can 30:1031–1032Google Scholar
  23. Ely B, Stoner DS, Alvarado Bremer JR, Dean JM, Addis P, Cau A, Thelen EJ, Jones WJ, Black DE, Smith L, Scott K, Naseri I, Quattro JM (2002) Analyses of nuclear ldha gene and MtDNA control region sequences of atlantic northern bluefin tuna populations. Mar Biotechnol 4:583–588PubMedCrossRefGoogle Scholar
  24. Ely B, Viñas J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: The yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19PubMedCrossRefGoogle Scholar
  25. Estoup A, Angers B (1998) Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. In: Carvalho GR (ed) Advances in molecular ecology p. IOS Press, Amsterdam, pp 55–86Google Scholar
  26. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  27. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  28. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  29. FAO (1996) Precautionary approach to capture fisheries and species introductions, elaborated by the technical consultation on the precautionary approach to capture fisheries (including species introductions) (6 13 June 1995, lysekil, sweden). (Fisheries FTGfR, ed.). Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  30. Fromentin JM (2009) Lessons from the past: investigating historical data from bluefin tuna fisheries. Fish Fish 10:197–216Google Scholar
  31. Fromentin JM, Powers JE (2005) Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish 6:281–306Google Scholar
  32. Gordoa A, Olivar MP, Arevalo R, Vinas J, Moli B, Illas X (2009) Determination of atlantic bluefin tuna (Thunnus thynnus) spawning time within a transport cage in the western Mediterranean. ICES J Mar Sci 66:2205–2210CrossRefGoogle Scholar
  33. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  34. Grant WS, Garcia-Marin JL, Utter F (1999) Defining populations boundaries for fishery management. In: Mustafa S (ed) Management. Blackwell Science, Oxford, pp 27–72Google Scholar
  35. Graves JE (1998) Molecular insights into the population structures of cosmopolitan marine fishes. J Hered 89:427–437CrossRefGoogle Scholar
  36. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  37. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucl Acids Symp Ser 41:95–98Google Scholar
  38. Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362Google Scholar
  39. Hauser L, Adcock GJ, Smith PJ, Ramírez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of new Zealand snapper (Pagrus auratus). Proc Natl Acad Sci USA 99:11742–11747PubMedCrossRefGoogle Scholar
  40. Heinisch G, Corriero A, Medina A, Abascal FJ, de la Serna JM, Vassallo-Agius R, Rios AB, Garcia A, de la Gandara F, Fauvel C, Bridges CR, Mylonas CC, Karakulak SF, Oray I, De Metrio G, Rosenfeld H, Gordin H (2008) Spatial-temporal pattern of bluefin tuna (Thunnus thynnus L. 1758) gonad maturation across the Mediterranean sea. Mar Biol 154:623–630CrossRefGoogle Scholar
  41. ICCAT (2008) Report of the 2008 Atlantic bluefin stock assessment session (scrs/2008/019). International Commission for the Conservation of Atlantic Tunas, Madrid, p 161Google Scholar
  42. Karakulak S, Oray I, Corriero A, Deflorio M, Santamaria N, Desantis S, De Metrio G (2004) Evidence of a spawning area for the bluefin tuna (Thunnus thynnus L.) in the eastern Mediterranean. J Appl Ichthyol 20:318–320CrossRefGoogle Scholar
  43. Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302CrossRefGoogle Scholar
  44. Lutcavage ME, Brill RW, Skomal GB, Chase BC, Howey PW (1999) Results of pop-up satellite tagging of spawning size class fish in the gulf of Maine: do north Atlantic bluefin tuna spawn in the mid-Atlantic? Can J Fish Aquat Sci 56:173–177CrossRefGoogle Scholar
  45. MacKenzie BR, Mosegaard H, Rosenberg AA (2009) Impending collapse of bluefin tuna in the northeast Atlantic and Mediterranean. Con Let 2:26–35CrossRefGoogle Scholar
  46. Magoulas A, Tsimenides N, Zouros E (1996) Mitochondrial DNA phylogeny and the reconstruction of the population history of a species: the case of the European anchovy (Engraulis encrasicolus). Mol Biol Evol 13:178–190PubMedGoogle Scholar
  47. Magoulas A, Castilho R, Caetano S, Marcato S, Patarnello T (2006) Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Mol Phylogenet Evol 39:734–746PubMedCrossRefGoogle Scholar
  48. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  49. McDowell JR, Díaz-Jaimes P, Graves JE (2002) Isolation and characterization of seven tetranucleotide microsatellite loci from Atlantic northern bluefin tuna Thunnus thynnus thynnus. Mol Ecol Notes 2:214–216CrossRefGoogle Scholar
  50. Medina A, Abascal FJ, Megina C, Garcia A (2002) Stereological assessment of the reproductive status of female atlantic northern bluefin tuna during migration to Mediterranean spawning grounds through the strait of Gibraltar. J Fish Biol 60:203–217CrossRefGoogle Scholar
  51. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  52. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163PubMedGoogle Scholar
  53. O’Reilly PT, Canino MF, Bailey KM, Bentzen P (2004) Inverse relationship between Fst and microsatellite polymorphism in the marine fish, walleye Pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 13:1799–1814PubMedCrossRefGoogle Scholar
  54. Olsen JB, Merkouris SE, Seeb JE (2002) An examination of spatial and temporal genetic variation in walleye pollock (Theragra chalcogramma) using allozyme, mitochondrial DNA, and microsatellite data. Fish Bull 100:752–764Google Scholar
  55. Oray IK, Karakulak FS (1997) Some remarks of the bluefin tuna (Thunnus thynnus) fishery in Turkish waters in 1993, 1994, 1995. ICAAT Coll Vol Sci Pap 46:357–362Google Scholar
  56. Oray IK, Karakulak FS (2005) Further evidence of spawning of bluefin tuna (Thunnus thynnus L., 1758) and the tuna species (Auxis rochei Ris., 1810, Euthynnus alletteratus Raf., 1810) in the eastern Mediterranean sea: preliminary results of tunalev larval survey in 2004. J Appl Ichthyol 21:236–240CrossRefGoogle Scholar
  57. Palumbi SR (1994) Genetic-divergence, reproductive isolation, and marine speciation. Ann Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  58. Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158CrossRefGoogle Scholar
  59. Patarnello T, Volckaert FAMJ, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444PubMedCrossRefGoogle Scholar
  60. Pearse DE, Crandall KA (2004) Beyond Fst: analysis of population genetic data for conservation. Conserv Genet 5:585–602CrossRefGoogle Scholar
  61. Posada D (2003) Using modeltest and PAUP* to select a model of nucleotide substitution. In: Baxevanis AD, Davison RD, Page RDM, Petsko GA, Stein LD, Stormo GD (eds) Current protocols in bioinformatics. Wiley, Londan, pp 6.5.1–6.5.14Google Scholar
  62. Posada D (2008) jModeltest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  63. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  64. Pujolar JM, Roldán MI, Pla C (2003) Genetic analysis of tuna populations Thunnus thynnus thynnus and T. alalunga. Mar Biol 143:613–621CrossRefGoogle Scholar
  65. Punt AE (2006) The FAO precautionary approach after almost 10 years: have we progressed towards implementing simulation-tested feedback-control management systems for fisheries management? Nat Resour Model 19:441–464CrossRefGoogle Scholar
  66. Ravier C, Fromentin JM (2001) Long-term fluctuations in the eastern Atlantic and Mediterranean bluefin tuna population. ICES J Mar Sci 58:1299–1317CrossRefGoogle Scholar
  67. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  68. Reeb CA (2010) Genetic discontinuity of big fish in a small sea. Proc Natl Acad Sci USA 107:2377–2378PubMedCrossRefGoogle Scholar
  69. Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ (2009) Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish 10:361–395Google Scholar
  70. Riccioni G, Landi M, Ferrara G, Milano I, Cariani A, Zane L, Sella M, Barbujani G, Tinti F (2010) Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic bluefin tuna of the Mediterranean sea. Proc Natl Acad Sci USA 107:2102–2107PubMedCrossRefGoogle Scholar
  71. Rice WR (1989) Analyzing tables of statistical test. Evolution 43:223–225CrossRefGoogle Scholar
  72. Rooker JR, Bremer JRA, Block BA, Dewar H, De Metrio G, Corriero A, Kraus RT, Prince ED, Rodriguez-Marin E, Secor DH (2007) Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev Fish Sci 15:265–310CrossRefGoogle Scholar
  73. Rooker JR, Secor DH, De Metrio G, Schloesser R, Block BA, Neilson JD (2008) Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322:742–744PubMedCrossRefGoogle Scholar
  74. Ryman N, Utter F (1987) Population genetics and fishery management. University of Washington Press, SeatlleGoogle Scholar
  75. Sanz N, Garcia-Marin JL, Vinas J, Roldán M, Pla C (2008) Spawning groups of European anchovy: population structure and management implications. ICES J Mar Sci 65:1635–1644CrossRefGoogle Scholar
  76. Sará R (1973) Sulla biologia dei tinni, Thunnus thynnus (L.). Bollettino di Pesca, Piscicoltura e Idrobiologia 28:217–243Google Scholar
  77. Sarasquete C, Cardenas S, de Canales MLG, Pascual E (2002) Oogenesis in the bluefin tuna, Thunnus thynnus L.: a histological and histochemical study. Histol Histopathol 17:775–788PubMedGoogle Scholar
  78. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  79. Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  80. Susca V, Corriero A, Bridges CR, De Metrio G (2001) Study of the sexual maturity of female bluefin tuna: purification and partial characterization of vitellogenin and its use in an enzyme-linked immunosorbent assay. J Fish Biol 58:815–831CrossRefGoogle Scholar
  81. Takagi M, Okamura T, Chow S, Taniguchi N (1999) PCR primers for microsatellite loci in tuna species of genus thunnus and its application for population genetic study. Fisheries Sci 65:571–576Google Scholar
  82. Teo SLH, Boustany A, Dewar H, Stokesbury MJW, Weng KC, Beemer S, Seitz AC, Farwell CJ, Prince ED, Block BA (2007) Annual migrations, diving behavior, and thermal biology of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds. Mar Biol 151:1–18CrossRefGoogle Scholar
  83. Thompson HC, Contin RF (1980) Electrophoretic study of Atlantic bluefin tuna (Thunnus thynnus) from the eastern and western north Atlantic ocean. Bull Mar Sci 30:727–731Google Scholar
  84. Van Oosterhout C, Hutchinson B, Wills D, Shipley P (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  85. Viñas J, Tudela S (2009) A validated methodology for genetic identification of tuna species (genus Thunnus). PLoS ONE 4:e7606PubMedCrossRefGoogle Scholar
  86. Viñas J, Alvarado Bremer J, Pla C (2004a) Phylogeography of the Atlantic bonito (Sarda sarda) in the northern Mediterranean: the combined effects of historical vicariance, population expansion, secondary invasion, and isolation by distance. Mol Phylogenet Evol 33:32–42PubMedCrossRefGoogle Scholar
  87. Viñas J, Alvarado Bremer JR, Pla C (2004b) Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar Biol 145:225–232CrossRefGoogle Scholar
  88. Viñas J, Pérez-Serra A, Vidal O, Alvarado Bremer JR, Pla C (2010) Genetic differentiation between eastern and western Mediterranean swordfish revealed by phylogeographic analysis of the mitochondrial DNA control region. ICES J Mar Sci 67:1222–1229CrossRefGoogle Scholar
  89. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450CrossRefGoogle Scholar
  90. Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439PubMedCrossRefGoogle Scholar
  91. Waples RS, Punt AE, Cope JM (2008) Integrating genetic data into management of marine resources: how can we do it better? Fish Fish 9:423–449Google Scholar
  92. Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191–201CrossRefGoogle Scholar
  93. Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, fresh-water, and anadromous fishes. J Fish Biol 44:213–232CrossRefGoogle Scholar
  94. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  95. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790PubMedCrossRefGoogle Scholar
  96. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CrossRefGoogle Scholar
  97. Zardoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Patarnello T (2004) Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol Ecol 13:1785–1798PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jordi Viñas
    • 1
    Email author
  • Ana Gordoa
    • 2
  • Raquel Fernández-Cebrián
    • 1
  • Carles Pla
    • 1
  • Ünal Vahdet
    • 3
  • Rosa M. Araguas
    • 1
  1. 1.Laboratori d’Ictiologia Genètica, Departament de BiologiaUniversitat de GironaGironaSpain
  2. 2.Centro de Estudios Avanzados de Blanes (CSIC)Blanes, GironaSpain
  3. 3.Department of Fisheries, Faculty of FisheriesEge UniversityBornovaTurkey

Personalised recommendations