Reviews in Fish Biology and Fisheries

, Volume 19, Issue 4, pp 481–564 | Cite as

Environmental influences on regulation of blood plasma/serum components in teleost fishes: a review

Article

Abstract

Concentrations of both inorganic and organic blood plasma/serum components of teleost fishes were reviewed in seven habitat/life-history categories. These were: freshwater; inland saline; estuarine and nearshore marine; pelagic and deep-sea; diadromous; southern cold-water; and northern cold-water. Plasma/serum osmolalities were compared among groups acclimated to/living in fresh and in salt water. Contributions of inorganic ions and colligative and non-colligative organic molecules were evaluated including with respect to melting and freezing points, and “antifreeze activity” of plasma/serum in species from cold marine waters. Possible roles of TMAO in deep-water fishes were reviewed. Discussion also included influences of ambient salinity and temperature on concentrations of plasma/serum components. Seasonal cycles of blood plasma/serum components were discussed, along with antifreeze concentrations in other body fluids and tissues of cold-water fishes. Regulatory patterns of plasma/serum osmolalities were compared among the most euryhaline of teleosts evaluated here. Highest mean values of plasma/serum osmolalities in sea water were seen in southern cold-water and in pelagic and deep-sea fishes. The southern cold-water group also had the lowest plasma/serum freezing points among these groups. Comparisons of mean plasma/serum Na+ and Cl concentrations among fishes from fresh waters did not differ significantly among groups, but species from cold marine waters showed higher levels than did other groups in marine waters. Plasma/serum osmotic, Na+ and Cl concentrations of these seven groups of teleosts were compared with those of other fish-like vertebrate groups. Possible impacts of global warming on regulatory responses of plasma/serum components were discussed.

Keywords

Teleosts Environment Life history Plasma components Osmolalities Freezing points 

Notes

Acknowledgments

My sincere thanks go to the Department of Zoology (now Department of Biology) and Dr. K. A. Bjorndal for providing space and facilities for my work. Also, I thank Dennis Haney, Steve Walsh, John Binello, Frank Davis, and the many others, students and colleagues, who participated with me in field and laboratory work, seminars and discussions. My thanks also to two anonymous reviewers who provided thoughtful comments for improvements in the manuscript.

References

  1. Aas-Hansen Ø, Vijayan MM, Johansen HK, Cameron C, Jørgensen EH (2005) Resmoltification in wild, anadromous Arctic char (Salvelinus alpinus): a survey of osmoregulatory, metabolic, and endocrine changes preceding annual seawater migration. Can J Fish Aquat Sci 62:195–204CrossRefGoogle Scholar
  2. Abacus Concepts Inc (1991) SuperANOVA, Version 1.11. Berkeley, CAGoogle Scholar
  3. Ahokas RA, Duerr FG (1975) Salinity tolerance and extracellular osmoregulation in two species of euryhaline teleosts, Culaea inconstans and Fundulus diaphanus. Comp Biochem Physiol 52A:445–448CrossRefGoogle Scholar
  4. Alexis MN, Papapraskeva-Papoutsoglou E, Papoutsoglou S (1984) Influence of acclimation temperature on the osmotic regulation and survival of rainbow trout (Salmo gairdneri) rapidly transferred from fresh water to sea water. Aquaculture 40:333–341CrossRefGoogle Scholar
  5. Allanson BR, Bok A, Van Wyk NI (1971) The influence of exposure to low temperature on Tilapia mossambica Peters (Cichlidae). J Fish Biol 3:181–185CrossRefGoogle Scholar
  6. Altinok I, Galli SM, Chapman FA (1998) Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi. Comp Biochem Physiol 120A:609–616Google Scholar
  7. Angel MV (1997) What is the deep sea? In: Randall DJ, Farrell AP (eds) Deep-sea fishes, fish physiology, vol 16. Academic Press, San Diego, pp 43–77CrossRefGoogle Scholar
  8. Arnesen AM, Halvorsen M, Nilssen KJ (1992) Development of hypoosmoregulatory capacity in arctic charr (Salvelinus alpinus) reared under either continuous light or natural photoperiod. Can J Fish Aquat Sci 49:229–237CrossRefGoogle Scholar
  9. Arnesen AM, Lysfjord G, Damsgård B (1995) Smolt characteristics of small first-time migrants, and resident Arctic charr, Salvelinus alpinus (L.), from a river system in northern Norway. Aquacult Res 26:809–818CrossRefGoogle Scholar
  10. Arnesen AM, Johnsen HK, Mortensen A, Jobling M (1998) Acclimation of Atlantic salmon (Salmo salar L.) smolts to ‘cold’ sea water following direct transfer from fresh water. Aquaculture 168:351–367CrossRefGoogle Scholar
  11. Arnold-Reed DE, Balment RJ (1991) Salinity tolerance and its seasonal variation in the flounder, Platichthys flesus. Comp Biochem Physiol 99A:145–149CrossRefGoogle Scholar
  12. Audet C, Claireaux G (1992) Diel and seasonal changes in resting levels of various blood parameters in brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 49:870–877CrossRefGoogle Scholar
  13. Audet C, Besner M, Munro J, Dutil J-D (1993) Seasonal and diel variations of various blood parameters in Atlantic cod (Gadus morhua) and American plaice (Hippoglossoides platessoides). Can J Zool 71:611–618CrossRefGoogle Scholar
  14. Backus RH (1951) New and rare records of fishes from Labrador. Copeia 1951:288–294CrossRefGoogle Scholar
  15. Barton M (1979) Serum osmoregulation in two species of estuarine blennoid fish, Anoplarchus purpurescens and Pholis ornata. Comp Biochem Physiol 64A:305–307CrossRefGoogle Scholar
  16. Bayly IAE (1969) Introductory comments, symposium on salt and brackish inland waters. Verh Int Ver Theor Angew Limnol 17:419–420Google Scholar
  17. Bayly IAE (1972) Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Ann Rev Ecol Syst 3:233–268CrossRefGoogle Scholar
  18. Bayly IAE, Williams WD (1966) Chemical and biological studies on some saline lakes of south-east Australia. Aust J Mar Freshwat Res 17:177–228CrossRefGoogle Scholar
  19. Bayly IAE, Williams WD (1975) Inland waters and their ecology. Longman, HawthornGoogle Scholar
  20. Beadle LC (1943) Osmotic regulation and the faunas of inland waters. Biol Rev 18:172–183CrossRefGoogle Scholar
  21. Beadle LC (1957) Comparative physiology: osmotic and ionic regulation in aquatic animals. Annu Rev Physiol 19:329–358PubMedCrossRefGoogle Scholar
  22. Beadle LC (1969) Osmotic regulation and the adaptation of freshwater animals to inland saline waters. Verh Int Ver Theor Angew Limnol 17:421–429Google Scholar
  23. Beadle LC (1974) The inland waters of tropical Africa. Longman Inc., New YorkGoogle Scholar
  24. Beamish FWH, Strachan PD, Thomas E (1978) Osmotic and ionic performance of the anadromous sea lamprey, Petromyzon marinus. Comp Biochem Physiol 60A:435–443CrossRefGoogle Scholar
  25. Becker EL, Bird R, Kelly JW, Schilling J, Solomon S, Young N (1958) Physiology of marine teleosts, I. Ionic composition of tissue. Physiol Zool 31:224–227Google Scholar
  26. Bellamy D, Chester Jones I (1961) Studies on Myxine glutinosa-I. The chemical composition of the tissues. Comp Biochem Physiol 3:175–183PubMedCrossRefGoogle Scholar
  27. Bendall B, Moore A, Quayle V (2005) The post-spawning movement of migratory brown trout Salmo trutta L. J Fish Biol 67:809–822CrossRefGoogle Scholar
  28. Blaber SJM (1974) Osmoregulation in juvenile Rhabdosargus holubi (Steindachner) (Teleostei: Sparidae). J Fish Biol 6:797–800CrossRefGoogle Scholar
  29. Black VS (1951) II. Osmotic regulation in teleost fishes. In: Hoar WS, Black VS, Black EC (eds) Some aspects of the physiology of fish. Univ Toronto Biol Ser No. 59, pp 53–89Google Scholar
  30. Black VS (1957) Excretion and osmoregulation. In: Brown ME (ed) The physiology of fishes, vol 1. Academic Press, New York, pp 163–205Google Scholar
  31. Blaxter JHS, Wardle CS, Roberts BL (1971) Aspects of the circulatory physiology and muscle systems of deep-sea fish. J Mar Biol Assoc UK 51:991–1006CrossRefGoogle Scholar
  32. Bolin B, Döös BR, Jäger J, Warrick RJ (eds) (1986) The greenhouse effect, climate change, and ecosystems. Scientific committee on problems of the environment (SCOPE) 29. Wiley, New YorkGoogle Scholar
  33. Bond RM, Cary MK, Hutchinson GE (1932) A note on the blood of the hag-fish Polistotrema stouti (Lockington). J Exp Biol 9:12–14Google Scholar
  34. Boula D, Castric V, Bernatchez L, Audet C (2002) Physiological, endocrine, and genetic bases of anadromy in the brook charr, Salvelinus fontinalis, of the Laval River (Québec, Canada). Environ Biol Fishes 64:229–242CrossRefGoogle Scholar
  35. Breder CM Jr, Rosen DE (1966) Modes of reproduction in fishes. The Natural History Press, Garden CityGoogle Scholar
  36. Burton RF (1986a) Internal reference standards in ionic regulation and the predictability of ionic concentrations in animals. Comp Biochem Physiol 83A:607–611CrossRefGoogle Scholar
  37. Burton RF (1986b) Ionic regulation in fish: the influence of acclimation temperature on plasma composition and apparent set points. Comp Biochem Physiol 85A:23–28CrossRefGoogle Scholar
  38. Butler DG, Youson JH (1988) Kidney function in the bowfin (Amia calva L.). Comp Biochem Physiol 89A:343–345CrossRefGoogle Scholar
  39. Butler DG, Clarke WC, Donaldson EM, Langford RW (1969) Surgical adrenalectomy of a teleost fish (Anguilla rostrata LeSueur); effect on plasma cortisol and tissue electrolyte and carbohydrate concentrations. Gen Comp Endocrinol 12:503–514PubMedCrossRefGoogle Scholar
  40. Byrne JM, Beamish FWH, Saunders KL (1972) Influence of salinity, temperature and exercise on plasma osmolality and ionic concentration in Atlantic salmon (Salmo salar). J Fish Res Board Can 29:1217–1220Google Scholar
  41. Cameron JN (1980) Body fluid pools, kidney function, and acid-base regulation in the freshwater catfish Ictalurus punctatus. J Exp Biol 86:171–185Google Scholar
  42. Canfield DE, Maceina MJ, Nordlie FG, Shireman JV (1985) Plasma osmotic and electrolyte concentrations of largemouth bass from some acidic Florida lakes. Trans Am Fish Soc 114:423–429CrossRefGoogle Scholar
  43. Carter HJ (1981) Aspects of the physiological ecology of species of Gambusia from Belize, Central America. Copeia 1981:694–700CrossRefGoogle Scholar
  44. Cataldi E, Ciccotti E, DiMarco P, DiSanto O, Bronzi P, Cataudella S (1995) Acclimation trials of juvenile Italian sturgeon to different salinities: morpho-physiological descriptors. J Fish Biol 47:609–618CrossRefGoogle Scholar
  45. Catlett RH, Millich DR (1976) Intracellular and extracellular osmoregulation of temperature acclimated goldfish: Carassius auratus L. Comp Biochem Physiol 55A:261–269CrossRefGoogle Scholar
  46. Chadwick EMP, Cairns DK, Dupuis HMC, Ewart KV, Kao MH, Fletcher GL (1990) Plasma antifreeze levels reflect the migratory behavior of Atlantic herring (Clupea harengus harengus) in the southern Gulf of St. Lawrence. Can J Fish Aquat Sci 47:1534–1536Google Scholar
  47. Chen L, DeVries AL, Cheng CH-C (1997) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci USA 94:3817–3822PubMedCrossRefGoogle Scholar
  48. Cheng CC-M, DeVries AL (2002) Origins and evolution of fish antifreeze proteins. In: Ewart KV, Hew CL (eds) Fish antifreeze proteins. Molecular aspects of fish and marine biology, vol 1. World Scientific Pub Co, Pte Ltd, Singapore, pp 83–105Google Scholar
  49. Chessman BC, Williams WD (1975) Salinity tolerance and osmoregulatory ability of Galaxias maculatus (Jenyns) (Pisces, Salmoniformes, Galaxiidae). Freshw Biol 5:135–140CrossRefGoogle Scholar
  50. Chew SF, Ip YK (1990) Differences in the responses of two mudskippers, Boleopthalmus beddaerti and Periopthalmus chrysospilos to changes in salinity. J Exp Zool 256:227–231CrossRefGoogle Scholar
  51. Christiansen JS, Chernitsky AG, Karamushko OV (1995) An Arctic teleost fish with a noticeably high body fluid osmolality: a note on the navaga, Eleginus navaga (Pallas 1811), from the White Sea. Polar Biol 15:303–306Google Scholar
  52. Claiborne JB, Walton JS, Compton-McCullough D (1994) Acid-base regulation, branchial transfers and renal output in a marine teleost fish (the longhorned sculpin Myoxocephalus octodecimspinosus) during exposure to low salinities. J Exp Biol 193:79–95PubMedGoogle Scholar
  53. Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218CrossRefGoogle Scholar
  54. Clarke WC, Lundqvist H, Eriksson L-O (1985) Accelerated photoperiod advances seasonal cycle of seawater adaptation in juvenile Baltic salmon, Salmo salar L. J Fish Biol 26:29–35CrossRefGoogle Scholar
  55. Coe MJ (1966) The biology of Tilapia grahami Boulenger in Lake Magadi, Kenya. Acta Trop 23:146–177Google Scholar
  56. Collette BB, Klein-MacPhee G (eds) (2002) Bigelow and Schroeder’s fishes of the Gulf of Maine, 3rd edn. Smithsonian Institution Press, WashingtonGoogle Scholar
  57. Conte FP, Wagner HH (1965) Development of osmotic and ionic regulation in juvenile steelhead trout Salmo gairdneri. Comp Biochem Physiol 14:603–620PubMedCrossRefGoogle Scholar
  58. Crocker PA, Arnold CR, DeBoer JA, Holt GJ (1983) Blood osmolality shift in juvenile red drum, Sciaenops ocellatus L. exposed to fresh water. J Fish Biol 23:315–319CrossRefGoogle Scholar
  59. Davenport J, Sayer MDJ (1993) Physiological determinants of distribution in fish. J Fish Biol 43(Suppl A):121–145Google Scholar
  60. Davenport J, Vahl O (1979) Responses of the fish Blennius pholis to fluctuating salinities. Mar Ecol Prog Ser 1:101–107CrossRefGoogle Scholar
  61. Davies PL, Sykes BD (1997) Antifreeze proteins. Curr Opin Struct Biol 7:828–834PubMedCrossRefGoogle Scholar
  62. Davies PL, Hew CL, Fletcher GL (1988) Fish antifreeze proteins: physiology and evolutionary biology. Can J Zool 66:2611–2617CrossRefGoogle Scholar
  63. Davies PL, Ewart KV, Fletcher GL (1993) The diversity and distribution of fish antifreeze proteins: new insights into their origins. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 2. Elsevier, Amsterdam, pp 279–291Google Scholar
  64. Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond B 357:927–935CrossRefGoogle Scholar
  65. Davis KB, Simco BA (1976) Salinity effects on plasma electrolytes of channel catfish, Ictalurus punctatus. J Fish Res Board Can 33:741–746Google Scholar
  66. Davson H, Grant CT (1960) Osmolarities of some body fluids in the elasmobranch and teleost. Biol Bull 119:293 (abstract)Google Scholar
  67. Dempson JB (1993) Salinity tolerance of freshwater acclimated, small-sized Arctic charr, Salvelinus alpinus from Northern Labrador. J Fish Biol 43:451–462CrossRefGoogle Scholar
  68. Deng G, Andrews DW, Laursen RA (1997) Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosus. FEBS Lett 402:17–20PubMedCrossRefGoogle Scholar
  69. DeVlaming VL, Sage M (1973) Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina. Comp Biochem Physiol 45A:31–44CrossRefGoogle Scholar
  70. DeVries AL (1970) Freezing resistance in Antarctic fishes. In: Holdgate M (ed) Antarctic ecology, vol 1. Academic Press, New York, pp 320–328Google Scholar
  71. DeVries AL (1971a) Freezing resistance in fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6. Academic Press, New York, pp 157–190Google Scholar
  72. DeVries AL (1971b) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155PubMedCrossRefGoogle Scholar
  73. DeVries AL (1974) Survival at freezing temperatures. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology, vol 1. Academic Press Inc Ltd, London, pp 289–330Google Scholar
  74. DeVries AL (1983) Antifreeze peptides and glycopeptides in cold-water fishes. Annu Rev Physiol 45:245–260PubMedCrossRefGoogle Scholar
  75. DeVries AL, Lin Y (1977) The role of glycoprotein antifreezes in the survival of Antarctic fishes. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Gulf, Houston, pp 439–458Google Scholar
  76. DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075PubMedCrossRefGoogle Scholar
  77. Dobbs GH III, DeVries AL (1975) Renal function in Antarctic teleost fishes: serum and urine composition. Mar Biol 29:59–70CrossRefGoogle Scholar
  78. Dobbs GH III, Lin Y, DeVries AL (1974) Aglomerulism in Antarctic fish. Science 185:793–794PubMedCrossRefGoogle Scholar
  79. Driedzic WR, Clow KA, Short CE, Ewart KV (2006) Glycerol production in rainbow smelt (Osmerus mordax) may be triggered by low temperature alone and is associated with the activation of glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. J Exp Biol 209:1016–1023PubMedCrossRefGoogle Scholar
  80. Drinkwater KF (2005) The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci 62:1327–1337CrossRefGoogle Scholar
  81. Duman JG, DeVries AL (1974a) Freezing resistance in winter flounder Pseudopleuronectes americanus. Nature 247:237–238CrossRefGoogle Scholar
  82. Duman JG, DeVries AL (1974b) The effects of temperature and photoperiod on antifreeze production in cold water fishes. J Exp Zool 190:89–98PubMedCrossRefGoogle Scholar
  83. Duman JG, DeVries AL (1975) The role of macromolecular antifreezes in cold water fishes. Comp Biochem Physiol 52A:193–199CrossRefGoogle Scholar
  84. Duston J, Saunders RL (1990) The entrainment role of photoperiod on hypoosmoregulatory and growth-related aspects of smolting in Atlantic salmon (Salmo salar). Can J Zool 68:707–715CrossRefGoogle Scholar
  85. Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  86. Eastman JT, DeVries AL, Coalson RE, Nordquist RE, Boyd RB (1979) Renal conservation of antifreeze peptide in Antarctic eelpout, Rhigophila dearborni. Nature 282:217–219PubMedCrossRefGoogle Scholar
  87. Echelle AA, Echelle AF, Hill LG (1972) Interspecific interactions and limiting factors of abundance and distribution in the Red River pupfish, Cyprinodon rubrofluviatilis. Am Midl Nat 88:109–130CrossRefGoogle Scholar
  88. Eddy FB, Maloiy GMO (1984) Ionic content of body fluids and sodium efflux in Oreochromis alcalicus grahami, a fish living at temperatures above 30°C and in conditions of extreme alkalinity. Comp Biochem Physiol 78A:359–361CrossRefGoogle Scholar
  89. Elger E, Elger B, Hentschel H, Stolte H (1987) Adaptation of renal function to hypotonic medium in the winter flounder (Pseudopleuronectes americanus). J Comp Physiol B 157:21–30PubMedCrossRefGoogle Scholar
  90. Eliassen RA, Johnsen HK, Mayer I, Jobling M (1998) Contrasts in osmoregulatory capacity of two Arctic charr, Salvelinus alpinus (L.), strains from Northern Norway. Aquaculture 168:255–269CrossRefGoogle Scholar
  91. Enevoldsen LT, Heiner I, DeVries AL, Steffensen JF (2003) Does fish from the Disko Bay area of Greenland possess antifreeze proteins during the summer? Polar Biol 26:365–370Google Scholar
  92. Engel DW, Hettler WF, Coston-Clements L, Hoss DE (1987) The effect of abrupt salinity changes on the osmoregulatory abilities of the Atlantic menhaden Brevoortia tyrannus. Comp Biochem Physiol 86A:723–727CrossRefGoogle Scholar
  93. Evans DH (1980) Osmotic and ionic regulation by freshwater and marine fishes. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York, pp 93–121Google Scholar
  94. Evans RP, Fletcher GL (2005) Type I antifreeze proteins expressed in snailfish skin are identical to their plasma counterparts. FEBS J 272:5327–5336PubMedCrossRefGoogle Scholar
  95. Ewart KV (2002) Fish antifreeze proteins: functions, molecular interactions and biological roles. In: Ewart KV, Hew CL (eds) Fish antifreeze proteins. Molecular aspects of fish and marine biology, vol 1. World Scientific Pub. Co., River Edge, pp 61–81Google Scholar
  96. Ewart KV, Fletcher GL (1990) Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Clupea harengus harengus). Can J Zool 68:1652–1658CrossRefGoogle Scholar
  97. Ewart KV, Hew CL (eds) (2002) Fish antifreeze proteins. Molecular aspects of fish and marine biology, vol 1. World Scientific Pub Co., River EdgeGoogle Scholar
  98. Ewart KV, Lin Q, Hew CL (1999) Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci 55:271–283PubMedCrossRefGoogle Scholar
  99. Ewart KV, Blanchard B, Johnson SC, Bailey WL, Martin-Robichaud DJ, Buzeta MF (2000) Freeze susceptibility in haddock (Melanogrammus aeglefinus). Aquaculture 188:91–101CrossRefGoogle Scholar
  100. Fable WA Jr, Williams TD, Arnold CR (1978) Description of reared eggs and young larvae of the spotted seatrout, Cynoscion nebulosus. Fish Bull 76:65–71Google Scholar
  101. Fänge R, Fugelli K (1962) Osmoregulation in chimaeroid fishes. Nature 196:689CrossRefGoogle Scholar
  102. Farmer GJ, Ritter JA, Ashfield D (1978) Seawater adaptation and parr-smolt transformation of juvenile Atlantic salmon, Salmo salar. J Fish Res Board Can 35:93–100Google Scholar
  103. Feldmeth CR, Waggoner JPIII (1972) Field measurements of tolerance to extreme hypersalinity in the California killifish, Fundulus parvipinnis. Copeia 1972:592–594CrossRefGoogle Scholar
  104. Ferraris RP, Almendras JM, Jazul AP (1988) Changes in plasma osmolality and chloride concentration during abrupt transfer of milkfish (Chanos chanos) from seawater to different test salinities. Aquaculture 70:145–157CrossRefGoogle Scholar
  105. Fiess JC, Kunkel-Patterson A, Mathias L, Riley LG, Yancey PH, Hirano T, Grau EG (2007) Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profile in the Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol 146A:252–264Google Scholar
  106. Finstad B, Nilsson KB, Arneson AM (1989) Seasonal changes in sea-water tolerance of Arctic charr (Salvelinus alpinus). J Comp Physiol 159B:371–378Google Scholar
  107. Fletcher GL (1977) Circannual cycles of blood plasma freezing point and Na+ and Cl concentrations in Newfoundland winter flounder (Pseudopleuronectes americanus): correlation with water temperature and photoperiod. Can J Zool 55:789–795PubMedCrossRefGoogle Scholar
  108. Fletcher CR (1978) Osmotic and ionic regulation in the cod (Gadus callarias L.) I. Water balance. J Comp Physiol 124:149–155Google Scholar
  109. Fletcher GL (1981) Effects of temperature and photoperiod on the plasma freezing point depression, Cl concentration, and protein “antifreeze” in winter flounder. Can J Zool 59:193–201CrossRefGoogle Scholar
  110. Fletcher GL, Hew CL, Joshi SB (1982a) Isolation and characterization of antifreeze glycoproteins from the frostfish, Microgadus tomcod. Can J Zool 60:348–355CrossRefGoogle Scholar
  111. Fletcher GL, Slaughter D, Hew CL (1982b) Seasonal changes in the plasma levels of glycoprotein antifreeze, Na+, Cl and glucose in Newfoundland Atlantic cod (Gadus morhua). Can J Zool 60:1851–1854CrossRefGoogle Scholar
  112. Fletcher GL, Kao MH, Haya K (1984) Seasonal and phenotypic variations in plasma protein antifreeze levels in a population of marine fish, sea raven, Hemitripterus americanus. Can J Fish Aquat Sci 41:819–824Google Scholar
  113. Fletcher GL, King MJ, Kao MH (1987) Low temperature regulation of antifreeze glycopeptide levels in Atlantic cod (Gadus morhua). Can J Zool 65:227–233CrossRefGoogle Scholar
  114. Fletcher GL, Kao MH, Dempson JB (1988) Lethal freezing temperatures of Arctic char and other salmonids in the presence of ice. Aquaculture 71:369–378CrossRefGoogle Scholar
  115. Fletcher GL, King MJ, Kao MH, Shears MA (1989) Antifreeze proteins in the urine of marine fish. Fish Physiol Biochem 6:121–127CrossRefGoogle Scholar
  116. Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390PubMedCrossRefGoogle Scholar
  117. Fogaça RTH, Andrews MA, Godt RE (1990) Trimethylamine n-oxide (TMAO) protects skinned skeletal muscle fibers from the deleterious effects of increased ionic strength. Biophys J 57:546aGoogle Scholar
  118. Fontaine M, Koch H (1950) Les variations d’euryhalinité et d’osmorégulation chez les poissons. J Physiologie 42:287–318Google Scholar
  119. Fontaínhas-Fernandes A, Russell-Pinto F, Gomes E, Reis-Henriques MA, Coimbra J (2001) The effect of dietary sodium chloride on some osmoregulatory parameters of the teleost, Oreochromis niloticus, after transfer from freshwater to seawater. Fish Physiol Biochem 23:307–316CrossRefGoogle Scholar
  120. Froese R, Pauly D (eds) (2008) FishBase. World Wide Web electronic publication (www.fishbase.org, version, June 2008)
  121. Furspan P, Prange HD, Greenwald L (1984) Energetics and osmoregulation in the catfish, Ictalurus nebulosus and I. punctatus. Comp Biochem Physiol 77A:773–778CrossRefGoogle Scholar
  122. Galloway TM (1933) Osmotic pressure and saline content of blood of Petromyzon fluviatilis. J Exp Biol 10:313–316Google Scholar
  123. Gaumet F, Boeuf G, Severe A, LeRoux A, Mayer-Gostan N (1995) Effects of salinity on the ionic balance and growth of juvenile turbot. J Fish Biol 47:865–876CrossRefGoogle Scholar
  124. Gauthier SY, Marshall CB, Fletcher GL, Davies PL (2005) Hyperactive antifreeze protein in flounder species. FEBS J 272:4439–4449PubMedCrossRefGoogle Scholar
  125. Gilbert CR, Williams JD (2002) Field guide to fishes, North America, rev edn. Alfred A. Knopf, New YorkGoogle Scholar
  126. Gillett MB, Suko JR, Santoso FO, Yancey PH (1997) Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: a high-pressure adaptation? J Exp Zool 279:386–391CrossRefGoogle Scholar
  127. Gilmore RG, Cooke DW, Donohoe CJ (1982) A comparison of the fish populations and habitat in open and closed salt marsh impoundments in east-central Florida. Northeast Gulf Sci 5:25–37Google Scholar
  128. Goddard SV, Kao MH, Fletcher GL (1992) Antifreeze production, freeze resistance, and overwintering of juvenile northern Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 49:516–522CrossRefGoogle Scholar
  129. Goldstein L, Palatt PJ (1974) Trimethylamine oxide excretion rates in elasmobranches. Am J Physiol 227:1268–1272PubMedGoogle Scholar
  130. Gong Z, Fletcher GL, Hew CL (1992) Tissue distribution of fish antifreeze protein mRNAs. Can J Zool 70:810–814CrossRefGoogle Scholar
  131. Gong Z, Ewart KV, Hu Z, Fletcher GL, Hew CL (1996) Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequences. J Biol Chem 271:4106–4112PubMedCrossRefGoogle Scholar
  132. Gonzalez RJ, McDonald DG (2000) Ionoregulatory responses to temperature change in two species of freshwater fish. Fish Physiol Biochem 22:311–317CrossRefGoogle Scholar
  133. Gonzalez-Cabrera PJ, Dowd F, Pedibhotla VK, Rosario R, Stanley-Samuelson D, Petzel D (1995) Enhanced hypo-osmoregulation induced by warm-acclimation in Antarctic fish is mediated by increased gill and kidney Na+/K+-ATPase activities. J Exp Biol 198:2279–2291PubMedGoogle Scholar
  134. Gordon MS (1959a) Ionic regulation in the brown trout (Salmo trutta L.). J Exp Biol 36:227–252Google Scholar
  135. Gordon MS (1959b) Osmotic and ionic regulation in Scottish brown trout and sea trout (Salmo trutta L.). J Exp Biol 36:253–260Google Scholar
  136. Gordon MS, Amdur BH, Scholander PF (1962) Freezing resistance in some northern fishes. Biol Bull 122:52–62CrossRefGoogle Scholar
  137. Gordon MS, Boëtius J, Boëtius I, Evans DH, McCarthy R, Oglesby L (1965) Salinity adaptation in the mudskipper fish, Periophthalmus sobrinus. Hvalrådets Skrifter 48:85–93Google Scholar
  138. Gozlan RE, Pinder AC, Shelly J (2002) Occurrence of the Asiatic cyprinid Pseudorasbora parva in England. J Fish Biol 61:298–300CrossRefGoogle Scholar
  139. Grant FB, Pang PKT, Griffith RW (1969) The 24-hour seminal hydration response in goldfish (Carassius auratus). I. Sodium, potassium, calcium, magnesium, chloride and osmolality of serum and seminal fluid. Comp Biochem Physiol 30:273–280PubMedCrossRefGoogle Scholar
  140. Grant BF, Mehrle PM, Russell TR (1970) Serum characteristics of spawning paddlefish (Polyodon spathula). Comp Biochem Physiol 37:321–330CrossRefGoogle Scholar
  141. Griffith RW (1974) Environment and salinity tolerance in the genus Fundulus. Copeia 1974:319–331CrossRefGoogle Scholar
  142. Griffith RW, Pang PKT (1979) Mechanisms of osmoregulation in the coelacanth: evolutionary implications. Occas Pap Calif Acad Sci 134:79–93Google Scholar
  143. Griffith RW, Pang PKT, Srivastava AR, Pickford GE (1973) Serum composition of freshwater stingrays (Potamotrygonidae) adapted to fresh and dilute sea water. Biol Bull 144:304–320CrossRefGoogle Scholar
  144. Griffith RW, Umminger BL, Grant BF, Pang PKT, Pickford GE (1974) Serum composition of the coelacanth, Latimeria chalumnae Smith. J Exp Zool 187:87–102PubMedCrossRefGoogle Scholar
  145. Guynn S, Dowd F, Petzel D (2002) Characterization of gill Na/K-ATPase activity and ouabain binding in Antarctic and New Zealand nototheniid fishes. Comp Biochem Physiol 131A:363–374Google Scholar
  146. Haas R (1982) Notes on the ecology of Aphanius dispar (Pisces, Cyprinodontidae) in the Sultanate of Oman. Freshw Biol 12:89–95CrossRefGoogle Scholar
  147. Halvorsen M, Arnesen AM, Nilssen KM, Jobling M (1993) Osmoregulatory ability of anadromous Arctic charr, Salvelinus alpinus (L.), migrating toward the sea. Aquac Fish Manag 24:199–211Google Scholar
  148. Hammer UT (1986) Saline lake ecosystems of the world. Dr. W. Junk, DordrechtGoogle Scholar
  149. Harden Jones FR, Scholes P (1974) The effect of low temperature on cod, Gadus morhua. J Cons Int Explor Mer 35:258–271Google Scholar
  150. Harding MM, Anderberg PI, Haymet ADJ (2003) ‘Antifreeze’ glycoproteins from polar fish. Eur J Biochem 270:1381–1392PubMedCrossRefGoogle Scholar
  151. Hardisty MW (1956) Some aspects of osmotic regulation in lampreys. J Exp Biol 33:431–447Google Scholar
  152. Hargens AR (1972) Freezing resistance in polar fishes. Science 176:184–186PubMedCrossRefGoogle Scholar
  153. Hebard CE, Flick GJ, Martin RE (1982) Occurrence and significance of trimethylamine oxide and its derivatives in fish and shellfish. In: Martin RE, Flick GJ, Hebard CE, Ward DR (eds) Chemistry and biochemistry of marine food products. AVI, Westport, pp 149–304Google Scholar
  154. Hedgpeth JW (1959) Some preliminary considerations of the biology of inland mineral waters. Archivio di Oceanografia e Limnologia 11(Suppl):111–141Google Scholar
  155. Hegab SA, Hanke W (1982) Electrolyte changes and volume regulatory processes in the carp (Cyprinus carpio) during osmotic stress. Comp Biochem Physiol 71A:157–164CrossRefGoogle Scholar
  156. Held JW, Peterka JJ (1974) Age, growth, and food habits of the fathead minnow, Pimephales promelas, in North Dakota saline lakes. Trans Am Fish Soc 103:743–756CrossRefGoogle Scholar
  157. Hew CL, Fletcher GL, Ananthanarayanan VS (1980) Antifreeze proteins from the shorthorn sculpin, Myoxocephalus scorpius: isolation and characterization. Can J Biochem 58:377–383PubMedGoogle Scholar
  158. Hew CL, Slaughter D, Fletcher GL, Joshi SB (1981) Antifreeze glycoproteins in the plasma of Newfoundland Atlantic cod (Gadus morhua). Can J Zool 59:2186–2191CrossRefGoogle Scholar
  159. Hickman CP Jr (1959) The osmoregulatory role of the thyroid gland in the starry flounder, Platichthys stellatus. Can J Zool 37:997–1060CrossRefGoogle Scholar
  160. Hickman CP Jr (1965) Studies on renal function in freshwater teleost fish. Trans R Soc Can 6:213–236Google Scholar
  161. Hoag H (2003) Atlantic cod meet icy death. Nature 422:792PubMedGoogle Scholar
  162. Hoar WS (1988) The physiology of smolting salmonids. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6B. Academic Press, New York, pp 275–343Google Scholar
  163. Holligan PM, Reiners WA (1992) Predicting the responses of the coastal zone to global change. Adv Ecol Res 22:211–255CrossRefGoogle Scholar
  164. Holmes WN, Donaldson EM (1969) The body compartments and the distribution of electrolytes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 1. Academic Press, New York, pp 1–89Google Scholar
  165. Houston AH, Madden JA (1968) Environmental temperature and plasma electrolyte regulation in the carp Cyprinus carpio. Nature 217:969–970CrossRefGoogle Scholar
  166. Houston AH, Smeda JS (1979) Thermoacclimatory changes in the ionic microenvironment of haemoglobin in the stenothermal rainbow trout (Salmo gairdneri) and eurythermal carp (Cyprinus carpio). J Exp Biol 80:317–340PubMedGoogle Scholar
  167. Hunt BM, Hoefling K, Cheng C-HC (2003) Annual warming episodes in seawater temperatures in McMurdo sound in relationship to endogenous ice in notothenioid fish. Antarctic Sci 15:333–338CrossRefGoogle Scholar
  168. Hwang PP, Sun CM, Wu SM (1989) Changes of plasma osmolality, chloride concentration, and gill Na+/K+ ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar Biol 100:295–299CrossRefGoogle Scholar
  169. Jackson AJ (1981) Osmotic regulation in rainbow trout (Salmo gairdneri) following transfer to sea water. Aquaculture 24:143–151CrossRefGoogle Scholar
  170. Jacob WF, Taylor MH (1983) The time course of seawater acclimation in Fundulus heteroclitus. J Exp Zool 228:33–39CrossRefGoogle Scholar
  171. Jensen MK, Madsen SS, Kristiansen K (1998) Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in gills of the European sea bass, Dicentrarchus labrax (L.). J Exp Zool 282:290–300PubMedCrossRefGoogle Scholar
  172. Jordan F, Haney DC, Nordlie FG (1993) Plasma osmotic regulation and routine metabolism in the Eustis pupfish, Cyprinodon variegatus hubbsi (Teleostei: Cyprinodontidae). Copeia 1993:784–789CrossRefGoogle Scholar
  173. Jørgensen EJ, Arnesen AM (2002) Seasonal changes in osmotic and ionic regulation in Arctic charr, Salvelinus alpinus, from a high- and a sub-arctic anadromous population. Environ Biol Fish 64:185–193CrossRefGoogle Scholar
  174. Kakuta I (1987) Comparison of osmotic regulation abilities among three Tridentiger species. Nippon Suisan Gakkaishi 53:941–945Google Scholar
  175. Kato A, Doi H, Nakada T, Sakai H, Hirose S (2005) Takifugu obscurus is a euryhaline species very close to Takifugu rubripes and suitable for studying osmoregulation. BMC Physiol 5:18. doi: 10.1186/1472-6793-5-18 PubMedCrossRefGoogle Scholar
  176. Katoh F, Hasegawa S, Kita J, Takagi Y, Kaneko T (2001) Distinct seawater and freshwater types of chloride cells in killifish, Fundulus heteroclitus. Can J Zool 79:822–829CrossRefGoogle Scholar
  177. Kelly RH, Yancey PH (1999) High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol Bull 196:18–25CrossRefGoogle Scholar
  178. Kelly SP, Chow INK, Woo NYS (1999) Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimation. J Exp Zool 283:226–241CrossRefGoogle Scholar
  179. Kennedy VS (1990) Anticipated effects of climate change on estuarine and coastal fisheries. Fisheries 15:16–24CrossRefGoogle Scholar
  180. Keys A, Hill RM (1934) The osmotic pressure of the colloids in fish sera. J Exp Biol 11:28–33Google Scholar
  181. Kilby JD (1955) The fishes of two Gulf coastal marsh areas of Florida. Tulane Stud Zool 2:175–247Google Scholar
  182. Knox GA (2007) Biology of the southern ocean, 2nd edn. CRC, Taylor & Francis, Boca RatonGoogle Scholar
  183. Koch HJ, Heuts MJ (1943) Régulation osmotique, cycle sexuel et migration de reproduction chez les Épinoches. Arch Intern Physiol 53:253–266CrossRefGoogle Scholar
  184. Kolok AS, Sharkey D (1997) Effect of freshwater acclimation on the swimming performance and plasma osmolarity of the euryhaline Gulf killifish. Trans Am Fish Soc 126:866–870CrossRefGoogle Scholar
  185. Kornfield IL, Nevo E (1976) Likely pre-Suez occurrence of a Red Sea fish Aphanius dispar in the Mediterranean. Nature 264:289–291CrossRefGoogle Scholar
  186. Kostecki PT (1984) The effect of osmotic and ion-osmotic stresses on the blood and urine composition and urine flow of rainbow trout (Salmo gairdneri). Comp Biochem Physiol 79A:215–221CrossRefGoogle Scholar
  187. Krayushkina LS, Semenova OG, Panov AA, Gerasimov AA (1996) Functional traits of the osmoregulatory system of juvenile paddlefish Polyodon spathula (Polyodontidae). J Ichthyol 36:787–793Google Scholar
  188. Krayushkina AA, Gerasimov AA, Smirnov AV (2001) Hypoosmotic regulation in anadromous marine sturgeon, with special references to the structure and function of their kidneys and gill chloride cells. Doklady Biol Sci 378:210–212CrossRefGoogle Scholar
  189. Krogh A (1939) Osmotic regulation in aquatic animals. Cambridge University Press, CambridgeGoogle Scholar
  190. Kubo T (1953) On the blood of salmonid fishes of Japan during migration. I. Freezing-point of the blood. Bull Fac Fish Hokkaido Univ 4:138–148Google Scholar
  191. Kubo T (1955) Changes of some characteristics of blood smolts of Oncorhynchus masou during seaward migration. Bull Fac Fish Hokkaido Univ 6:201–207Google Scholar
  192. Kucera CJ, Faulk CK, Holt GJ (2002) The effect of spawning salinity on eggs of spotted seatrout (Cynoscion nebulosus, Cuvier) from two bays with historically different salinity regimes. J Exp Mar Biol Ecol 272:147–158CrossRefGoogle Scholar
  193. Lahlou B, Henderson IW, Sawyer WH (1969) Renal adaptations by Opsanus tau, a euryhaline aglomerular teleost, to dilute media. Am J Physiol 216:1266–1272PubMedGoogle Scholar
  194. Lange R, Fugelli K (1965) The osmotic adjustment in the euryhaline teleosts, the flounder, Pleuronectes flesus L. and the three-spined stickleback, Gasterosteus aculeatus L. Comp Biochem Physiol 15:283–292PubMedCrossRefGoogle Scholar
  195. Lasserre P, Gallis J-L (1975) Osmoregulation and differential penetration of two grey mullets, Chelon labrosus (Risso) and Lisa ramada (Risso) in estuarine fish ponds. Aquaculture 5:323–344CrossRefGoogle Scholar
  196. LeBreton G, Beamish W (1998) The influence of salinity on ionic concentration and osmolarity of blood serum in lake sturgeon, Acipenser fulvescens. Environ Biol Fish 52:477–482CrossRefGoogle Scholar
  197. Lee CL (1969) Salinity tolerance and osmoregulation of Taeniomembras microstomus (Gunther, 1861) (Pisces: Mugiliformes: Atherinidae) from Australian salt lakes. Aust J Mar Freshwat Res 20:157–162CrossRefGoogle Scholar
  198. LeFrançois NR, Lamarre SG, Blier PU (2004) Tolerance, growth and haloplasticity of the Atlantic wolfish (Anarchichas lupus) exposed to various salinities. Aquaculture 236:659–675CrossRefGoogle Scholar
  199. Leray C, Colin DA, Florentz A (1981) Time course of osmotic adaptation and gill energetics of rainbow trout (Salmo gairdneri R.) following abrupt changes in external salinity. J Comp Physiol 144:175–181Google Scholar
  200. Lewis JM, Ewart KV, Driedzic WR (2004) Freeze resistance in rainbow smelt (Osmerus mordax); seasonal pattern of glycerol and antifreeze protein levels of liver enzyme activity associated with glycerol production. Physiol Biochem Zool 77:415–422PubMedCrossRefGoogle Scholar
  201. Littlepage JL (1965) Oceanographic investigations in McMurdo Sound, Antarctica. In: Llano GA (ed) Biology of the Antarctic Seas II. Antarctic research series, vol 5. American Geophysical Union, Publication No. 1297, Washington, pp 1–37Google Scholar
  202. Loretz CA (1979) Osmotic and cell volume regulation in the goby, Gillichthys mirabilis. J Exp Zool 210:237–244CrossRefGoogle Scholar
  203. Lotan R (1960) Adaptability of Tilapia nilotica to various saline conditions. Bamidgeh 12:96–100Google Scholar
  204. Lotan R (1971) Osmotic adjustment in the euryhaline teleost Aphanius dispar (Cyprinodontidae). Z vergl Physiol 75:383–387CrossRefGoogle Scholar
  205. Low W-K, Lin Q, Ewart KV, Fletcher GL, Hew CL (2002) The skin-type antifreeze polypeptides: a new class of type I AFPs. In: Ewart KV, Hew CL (eds) Fish antifreeze proteins. Molecular aspects of fish and marine biology, vol 1. World Scientific Publ Co Pte Ltd, Singapore, pp 161–186Google Scholar
  206. Lowe CJ, Davison W (2005) Plasma osmolarity, glucose concentration and erythrocyte responses of two Antarctic nototheniid fishes to acute and chronic thermal change. J Fish Biol 67:752–766CrossRefGoogle Scholar
  207. Lutz PL (1972) Ionic and body compartment responses to increasing salinity in the perch Perca fluviatilis. Comp Biochem Physiol 42A:711–717CrossRefGoogle Scholar
  208. Lutz PL (1975) Osmotic and ionic composition of the polypteroid Erpetoichthys calabaris. Copeia 1975:119–123CrossRefGoogle Scholar
  209. Lutz PL, Robertson JD (1971) Osmotic constituents of the Coelacanth Latimeria chalumnae Smith. Biol Bull 141:553–560CrossRefGoogle Scholar
  210. Lysfjord G, Staurnes M (1998) Gill Na+, K+-ATPase activity and hypoosmoregulatory ability of seaward migrating smolts of anadromous Atlantic salmon (Salmo salar), sea trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in the Hals River, Northern Norway. Aquaculture 168:279–288CrossRefGoogle Scholar
  211. Maceina MJ, Nordlie FG, Shireman JV (1980) The influence of salinity on oxygen consumption and plasma electrolytes in grass carp, Ctenopharyngodon idella Val. J Fish Biol 16:613–619CrossRefGoogle Scholar
  212. Macfarlane NAH (1974) Effect of hypophysectomy on osmoregulation in the euryhaline flounder Platichthyes flesus (L.) in seawater and fresh water. Comp Biochem Physiol 47A:201–217CrossRefGoogle Scholar
  213. Mackay WC (1974) Effect of temperature on osmotic and ionic regulation in goldfish, Carassius auratus. J Comp Physiol 88:1–19CrossRefGoogle Scholar
  214. Madsen SS, McCormick SD, Young G, Endersen JS, Nishioka RS, Bern HA (1994) Physiology of seawater acclimation in the striped bass, Morone saxatilis (Walbaum). Fish Physiol Biochem 13:1–11CrossRefGoogle Scholar
  215. Maetz J (1974) Aspects of adaptation to hypo-osmotic and hyper-osmotic environments. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology, vol 1. Academic Press Inc Ltd, London, pp 1–167Google Scholar
  216. Maitland PS (2004) Keys to the freshwater fish of Britain and Ireland. Freshwater Biological Association, AmblesideGoogle Scholar
  217. Mancera JM, Perez-Figares JM, Fernandez-Llebrez P (1993) Osmoregulatory responses to abrupt salinity changes in the euryhaline gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol 196A:245–250CrossRefGoogle Scholar
  218. Maren TH, Rawls JA, Burger JW, Myers AC (1963) The alkaline (Marshall’s) gland of the skate. Comp Biochem Physiol 10:1–16PubMedCrossRefGoogle Scholar
  219. Margaria R (1931) The osmotic changes in some marine animals. Proc R Soc Lond Ser B 107:606–624CrossRefGoogle Scholar
  220. Marshall WS, Emberley TR, Singer TD, Bryson SE, McCormick SD (1999) Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus: a multivariable approach. J Exp Biol 202:1535–1544PubMedGoogle Scholar
  221. Marshall CB, Fletcher GL, Davies PL (2004) Hyperactive antifreeze protein in a fish. Nature 429:153PubMedCrossRefGoogle Scholar
  222. Marshall CB, Chakrabartty A, Davies PL (2005) Hyperactive antifreeze protein from winter flounder is a very long rod-like dimer of α-helices. J Biol Chem 280:17920–17929PubMedCrossRefGoogle Scholar
  223. Martin TJ (1990) Osmoregulation in three species of Ambassidae (Osteichthyes: Perciformes) from estuaries of Natal. S Afr J Zool 25:229–234Google Scholar
  224. Mathers JS, Beamish FWH (1974) Changes in serum osmotic and ionic concentrations in landlocked Petromyzon marinus. Comp Biochem Physiol 49A:677–688CrossRefGoogle Scholar
  225. McCormick SD, Naiman RJ (1984) Osmoregulation in the brook trout, Salvelinus fontinalis-II. Effects of size, age and photoperiod on seawater survival and ionic regulation. Comp Biochem Physiol 79A:17–28CrossRefGoogle Scholar
  226. McCormick SD, Shrimpton SM, Zydlewski JD (1997) Temperature effects on osmoregulatory physiology of juvenile anadromous fish. In: Wood CM, McDonald DG (eds) Global warming: implications for freshwater and marine fish. Society of experimental biology seminar series 61. Cambridge University Press, Cambridge, pp 279–307Google Scholar
  227. McCormick SD, Cunjak RA, Dempson B, O’Dea MF, Carey JB (1999) Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Can J Fish Aquat Sci 56:1649–1658CrossRefGoogle Scholar
  228. McDonald MD, Grosell M (2006) Maintaining osmotic balance with an aglomerular kidney. Comp Biochem Physiol 143A:447–458Google Scholar
  229. McEnroe M, Cech JJ Jr (1985) Osmoregulation in juvenile and adult white sturgeon, Acipenser transmontanus. Environ Biol Fish 14:23–30CrossRefGoogle Scholar
  230. McFarland WN, Munz FW (1958) A re-examination of the osmotic properties of the Pacific hagfish, Polistotrema stouti. Biol Bull 114:348–356CrossRefGoogle Scholar
  231. McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, IthacaGoogle Scholar
  232. Melack JM (1983) Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia 105:223–230CrossRefGoogle Scholar
  233. Minckley CO, Klaassen HE (1969) Burying behavior of the plains killifish, Fundulus kansae. Copeia 1969:200–201CrossRefGoogle Scholar
  234. Morisawa M, Suzuki K, Morisawa S (1983) Effects of potassium and osmolality on spermatozoan motility of salmonid fishes. J Exp Biol 107:105–113PubMedGoogle Scholar
  235. Morris R (1958) The mechanism of marine osmoregulation in the lampern (Lampetra fluviatilis L.) and the causes of its breakdown during the spawning migration. J Exp Biol 35:649–664Google Scholar
  236. Morris R (1965) Studies on salt and water balance in Myxine glutinosa (L.). J Exp Biol 42:359–371Google Scholar
  237. Munro J, Audet C, Besner M, Dutil J-D (1994) Physiological response of American plaice (Hippoglossoides platessoides) exposed to low salinity. Can J Fish Aquat Sci 51:2448–2456CrossRefGoogle Scholar
  238. Munz FW, McFarland WN (1964) Regulatory function of a primitive vertebrate kidney. Comp Biochem Physiol 13:381–400PubMedCrossRefGoogle Scholar
  239. Murphy P, Houston AH (1977) Temperature, photoperiod and water-electrolyte balance in rainbow trout, Salmo gairdneri. Can J Zool 55:1377–1388PubMedCrossRefGoogle Scholar
  240. Murray HM, Hew CL, Fletcher GL (2003) Spatial expression patterns of skin-type antifreeze protein in winter flounder (Pseudopleuronectes americanus) epidermis following metamorphosis. J Morphol 257:78–86PubMedCrossRefGoogle Scholar
  241. Naiman RJ, Gerking SD, Stuart RE (1976) Osmoregulation in the Death Valley pupfish Cyprinodon milleri (Pisces: Cyprinodontidae). Copeia 1976:807–810CrossRefGoogle Scholar
  242. Nelson JS (1968) Salinity tolerance of brook sticklebacks, Culaea inconstans, freshwater ninespine sticklebacks, Pungitius pungitius, and freshwater fourspine sticklebacks, Apeltes quadracus. Can J Zool 46:663–667CrossRefGoogle Scholar
  243. Nelson JS (1976) Fishes of the world. Wiley, New YorkGoogle Scholar
  244. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken 601 ppGoogle Scholar
  245. Nelson JS, Crossman EJ, Espinosa-Pérez H, Findley LT, Gilbert CR, Lea RN, Williams JD (2004) Common and scientific names of fishes from the United States, Canada, and Mexico, 6th edn. American Fisheries Society Special Publication 29, BethesdaGoogle Scholar
  246. Nilssen KJ, Gulseth OA (1998) Summer seawater tolerance of small-sized Arctic charr, Salvelinus alpinus, on Svalbard. Polar Biol 20:95–98CrossRefGoogle Scholar
  247. Nilssen KJ, Gulseth OA, Iversen M, Kjøl R (1997) Summer osmoregulatory capacity of the world’s northernmost living salmonid. Am J Physiol (Reg Int Comp Physiol 41) 272:R743–R749Google Scholar
  248. Nordlie FG (1976) Influence of environmental temperature on plasma ionic and osmotic concentrations in Mugil cephalus Lin. Comp Biochem Physiol 55A:379–381CrossRefGoogle Scholar
  249. Nordlie FG (1985) Osmotic regulation in the sheepshead minnow Cyprinodon variegatus (Lacépède). J Fish Biol 26:161–170CrossRefGoogle Scholar
  250. Nordlie FG (1987a) Plasma osmotic, Na+ and Cl regulation under euryhaline conditions in Cyprinodon variegatus Lacépède. Comp Biochem Physiol 86A:57–61CrossRefGoogle Scholar
  251. Nordlie FG (1987b) Salinity tolerance and osmotic regulation in the diamond killifish, Adinia xenica. Environ Biol Fish 20:229–232CrossRefGoogle Scholar
  252. Nordlie FG (2000) Salinity responses in three species of Fundulus (Teleostei: Fundulidae) from Florida salt marshes. Verh Int Ver Theor Angew Limnol 27:1276–1279Google Scholar
  253. Nordlie FG, Haney DC (1993) Euryhaline adaptations in the fat sleeper, Dormitator maculatus. J Fish Biol 43:433–439CrossRefGoogle Scholar
  254. Nordlie FG, Mirandi A (1996) Salinity relationships in a freshwater population of eastern mosquitofish. J Fish Biol 49:1226–1232CrossRefGoogle Scholar
  255. Nordlie FG, Walsh SJ (1989) Adaptive radiation in osmotic regulatory patterns among three species of cyprinodontids (Teleostei: Atherinomorpha). Physiol Zool 62:1203–1218Google Scholar
  256. Nordlie FG, Szelistowski WA, Nordlie WC (1982) Ontogenesis of osmotic regulation in the striped mullet, Mugil cephalus L. J Fish Biol 20:79–86CrossRefGoogle Scholar
  257. Nordlie FG, Haney DC, Walsh SJ (1992) Comparisons of salinity tolerance and osmotic regulatory capabilities in populations of sailfin molly (Poecilia latipinna) from brackish and fresh waters. Copeia 1992:741–746CrossRefGoogle Scholar
  258. O’Grady SM, DeVries AL (1982) Osmotic and ionic regulation in polar fishes. J Exp Mar Biol Ecol 57:219–228CrossRefGoogle Scholar
  259. O’Grady SM, Ellory JC, DeVries AL (1982) Protein and glycoprotein antifreezes in the intestinal fluid of polar fishes. J Exp Biol 98:429–438PubMedGoogle Scholar
  260. O’Grady SM, Ellory JC, DeVries AL (1983) The role of low molecular weight antifreeze glycopeptides in the bile and intestinal fluid of Antarctic fish. J Exp Biol 104:149–162Google Scholar
  261. Ogawa M, Wada Y, Matsuura Y, Kukuchi M (1995) Seasonal differences of the plasma osmolalities of some teleosts in high-latitude cold water in Japan. In: Proceedings of the NIPR symposium on polar biology, vol 8, pp 177–181Google Scholar
  262. Oikari A (1975) Hydromineral balance in some brackish-water teleosts after thermal acclimation, particularly at temperatures near zero. Ann Zool Fennici 12:215–229Google Scholar
  263. Oikari A, Kristoffersson R (1973) Plasma ionic and osmotic levels in Myoxocephalus quadricornis (L.) in brackish water during temperature acclimation, particularly to cold. Ann Zool Fennici 10:495–499Google Scholar
  264. Osuga DT, Feeney RE (1978) Antifreeze glycoproteins from Arctic fish. J Biol Chem 253:5338–5343PubMedGoogle Scholar
  265. Page LM, Burr BM (1991) A field guide to freshwater fishes of North America north of Mexico. Houghton Mifflin, New YorkGoogle Scholar
  266. Parry G (1961) Osmotic and ionic changes in blood and muscle of migrating salmonids. J Exp Biol 38:411–427Google Scholar
  267. Parry G (1966) Osmotic adaptation in fishes. Biol Rev 41:392–444PubMedCrossRefGoogle Scholar
  268. Pearcy WG (1961) Seasonal changes in osmotic pressure of flounder sera. Science 134:193–194PubMedCrossRefGoogle Scholar
  269. Peterson MS (1988) Comparative physiological ecology of centrarchids in hyposaline environments. Can J Fish Aquat Sci 45:827–833CrossRefGoogle Scholar
  270. Peterson MS (1990) Hypoxia-induced physiological changes in two mangrove swamp fishes: sheepshead minnow, Cyprinodon variegatus Lacepede and sailfin molly, Poecilia latipinna (LeSueur). Comp Biochem Physiol 97A:17–21CrossRefGoogle Scholar
  271. Petzel D (2005) Drinking in Antarctic fishes. Polar Biol 28:763–768CrossRefGoogle Scholar
  272. Pickering AD, Morris R (1970) Osmoregulation of Lampetra fluviatilis L. and Petromyzon marinus (Cyclostomata) in hyperosmotic solutions. J Exp Biol 53:231–243PubMedGoogle Scholar
  273. Pickford GE, Grant FB (1967) Serum osmolality in the coelacanth, Latimeria chalumnae: urea retention and ion regulation. Science 155:568–570PubMedCrossRefGoogle Scholar
  274. Pickford GE, Pang PKT, Stanley JC, Fleming WR (1966) Calcium and freshwater survival in the euryhaline cyprinodonts, Fundulus kansae and Fundulus heteroclitus. Comp Biochem Physiol 18:503–509PubMedCrossRefGoogle Scholar
  275. Pickford GE, Grant FB, Umminger BL (1969) Studies on the blood serum of the euryhaline cyprinodont fish, Fundulus heteroclitus, adapted to fresh or to salt water. Trans Conn Acad Arts Sci 43:25–70Google Scholar
  276. Piermarini PM, Evans DH (1998) Osmoregulation of the Atlantic stingray (Dasyatis sabina) from the freshwater Lake Jessup of the St. Johns River, Florida. Physiol Zool 71:553–560PubMedGoogle Scholar
  277. Plaut I (1998) Comparison of salinity tolerance and osmoregulation in two closely related species of blennies from different habitats. Fish Physiol Biochem 19:181–188CrossRefGoogle Scholar
  278. Plaut I (1999) Effects of salinity on survival, osmoregulation, and oxygen consumption in the intertidal blenny, Parablennius sanguinolentus. Copeia 1999:775–779CrossRefGoogle Scholar
  279. Plaut I (2000) Resting metabolic rate, critical swimming speed, and routine activity of the euryhaline cyprinodontid, Aphanius dispar, acclimated to a wide range of salinities. Physiol Biochem Zool 73:590–596PubMedCrossRefGoogle Scholar
  280. Plaza-Yglesias M, Laufer M, Herrera FC (1988) Ionic and osmotic regulation in blood, aqueous humor, gills, and retina in the euryhaline fish, Eugerres plumieri. Comp Biochem Physiol 89A:377–382CrossRefGoogle Scholar
  281. Potts WTW (1968) Osmotic and ionic regulation. Ann Rev Physiol 30:73–104CrossRefGoogle Scholar
  282. Potts WTW, Parry G (1964) Osmotic and ionic regulation in animals. Pergamon, OxfordGoogle Scholar
  283. Potts WTW, Rudy PP (1972) Aspects of osmotic and ionic regulation in the sturgeon. J Exp Biol 56:703–715Google Scholar
  284. Prosser CL, Mackay W, Kato K (1970) Osmotic and ionic concentrations in some Alaskan fish and goldfish from different temperatures. Physiol Zool 43:81–89Google Scholar
  285. Ramsay JA, Brown RHJ (1955) Simplified apparatus and procedure for freezing-point determinations upon small volumes of fluid. J Sci Instrum 32:372–375CrossRefGoogle Scholar
  286. Rankin JC, Davenport J (1981) Animal osmoregulation. Wiley, New YorkGoogle Scholar
  287. Rao GMM (1969) Effect of activity, salinity, and temperature on plasma concentrations of rainbow trout. Can J Zool 47:131–134CrossRefGoogle Scholar
  288. Rawson DS, Moore JE (1944) The saline lakes of Saskatchewan. Can J Res D22:141–201Google Scholar
  289. Raymond JA (1989) Freezing resistance in some northern populations of Pacific herring, Clupea harengus pallasi. Can J Fish Aquat Sci 46:2104–2107CrossRefGoogle Scholar
  290. Raymond JA (1992) Glycerol is a colligative antifreeze in some northern fishes. J Exp Zool 262:347–352CrossRefGoogle Scholar
  291. Raymond JA (1993) Glycerol and water balance in a near-isosmotic teleost, winter acclimatized rainbow smelt. Can J Zool 71:1849–1854CrossRefGoogle Scholar
  292. Raymond J (1994) Seasonal variations in trimethylamine oxide and urea in the blood of a cold-adapted marine teleost, the rainbow smelt. Fish Physiol Biochem 13:13–22CrossRefGoogle Scholar
  293. Raymond JA, DeVries AL (1998) Elevated concentrations and synthetic pathways of trimethylamine oxide and urea in some teleost fishes of McMurdo Sound, Antarctica. Fish Physiol Biochem 18:387–398CrossRefGoogle Scholar
  294. Raymond JA, Hassel A (2000) Some characteristics of freezing avoidance in two osmerids, rainbow smelt and capelin. J Fish Biol 57(Suppl A):1–7CrossRefGoogle Scholar
  295. Raymond JA, Hattori H, Tsumura K (1996) Metabolic responses of glycerol-producing osmerid fishes to cold temperature. Fish Sci 62:257–260Google Scholar
  296. Reisman HM, Kao MH, Fletcher GL (1984) Antifreeze glycoprotein in a “southern” population of Atlantic tomcod, Microgadus tomcod. Comp Biochem Physiol 78A:445–447CrossRefGoogle Scholar
  297. Reist JD, Wrona FJ, Prowse TD, Power M, Dempson JB, King JR, Beamish RJ (2006) An overview of effects of climate change on selected Arctic freshwater and anadromous fishes. Ambio 35:381–387PubMedCrossRefGoogle Scholar
  298. Remane A, Schlieper C (1971) Biology of brackish water. Wiley Interscience, New YorkGoogle Scholar
  299. Renfro JL, Hill LG (1971) Osmotic acclimation in the Red River pupfish, Cyprinodon rubrofluviatilis. Comp Biochem Physiol 40A:711–714CrossRefGoogle Scholar
  300. Robins CR, Ray GC (1986) A field guide to Atlantic coast fishes of North America. Houghton Mifflin Co., New YorkGoogle Scholar
  301. Rodriguez A, Gallardo MA, Gisbert E, Santilari S, Ibara A, Sánchez J, Castelló-Orvay F (2003) Osmoregulation in juvenile Siberian sturgeon (Acipenser baerii). Fish Physiol Biochem 26:345–354CrossRefGoogle Scholar
  302. Roessig JM, Woodley CM, Cech JJ Jr, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275CrossRefGoogle Scholar
  303. Samerotte AL, Drazen JC, Brand GL, Seibel BA, Yancey PH (2007) Correlation of trimethylamine oxide and habitat depth within and among species of teleost fish: an analysis of causation. Physiol Biochem Zool 80:197–208PubMedCrossRefGoogle Scholar
  304. Sampaio LA, Bianchini A (2002) Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. J Exp Mar Biol Ecol 209:187–196CrossRefGoogle Scholar
  305. Sangiao-Alvarellos S, Arjona FJ, Martín del Río MP, Míguez JM, Mancera JM, Soengas JL (2005) Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. J Exp Biol 208:4291–4304PubMedCrossRefGoogle Scholar
  306. Scavia D, Field JC, Boesch DF, Buddemeier RW, Burkett HV, Cayan DR, Fogarty M, Harwell MA, Howarth RW, Mason C, Reed DJ, Royer TC, Sallenger AH, Titus JG (2002) Climate change impacts on US coastal and marine ecosystems. Estuaries 25:149–164CrossRefGoogle Scholar
  307. Schmitz M (1992) Annual variations in rheotactic behaviour and seawater adaptability in landlocked Arctic char (Salvelinus alpinus). Can J Fish Aquat Sci 49:448–452CrossRefGoogle Scholar
  308. Scholander PF, Maggert JE (1971) Supercooling and ice propagation in blood from Arctic fishes. Cryobiology 8:371–374PubMedCrossRefGoogle Scholar
  309. Scholander PF, van Dam L, Kanwisher JW, Hammel HT, Gordon MS (1957) Super cooling and osmoregulation in Arctic fish. J Cell Comp Physiol 49:5–24CrossRefGoogle Scholar
  310. Scott DM, Wilson RW, Brown JA (2007) The osmoregulatory ability of the invasive species sunbleak Leucaspius delineatus and topmouth gudeon Pseudorasbora parva at elevated salinities and their likely dispersal via brackish water. J Fish Biol 70:1606–1614CrossRefGoogle Scholar
  311. Seibel BA, Walsh PJ (2002) Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J Exp Biol 205:297–306PubMedGoogle Scholar
  312. Sharratt BM, Chester Jones I, Bellamy D (1964) Water and electrolyte composition of the body and renal function of the eel (Anguilla anguilla L.). Comp Biochem Physiol 11:9–18PubMedCrossRefGoogle Scholar
  313. Shelton C, Macdonald AG, Pequeux A, Gilchrist I (1985) The ionic composition of the plasma and erythrocytes of deep sea fish. J Comp Physiol B 155:629–633PubMedCrossRefGoogle Scholar
  314. Shelukhin GK, Metallov GF, Geraskin PP (1990) Effect of temperature and salinity of Caspian Sea water on juvenile Russian sturgeon, Acipenser güldenstädti. J Ichthyol 30:75–85Google Scholar
  315. Shrimpton JM, Björnsson BT, McCormick SD (2000) Can Atlantic salmon smolt twice? Endocrine and biochemical changes during smolting. Can J Fish Aquat Sci 57:1969–1976CrossRefGoogle Scholar
  316. Skadhauge E, Lotan R (1974) Drinking rate and oxygen consumption in the euryhaline teleost Aphanius dispar in waters of high salinity. J Exp Biol 60:547–556PubMedGoogle Scholar
  317. Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CL (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. J Biol Chem 256:2022–2026PubMedGoogle Scholar
  318. Smit GL, Hattingh J, Ferreira JT (1981) The physiological responses of blood during thermal adaptation in three freshwater fish species. J Fish Biol 19:147–160CrossRefGoogle Scholar
  319. Smith HW (1929) The composition of the body fluids of the goosefish (Lophius piscatorius). J Biol Chem 82:71–75Google Scholar
  320. Smith HW (1930) Metabolism of the lung-fish, Protopterus aethiopicus. J Biol Chem 88:97–130Google Scholar
  321. Smith HW (1931a) The absorption and excretion of water and salts by the elasmobranch fishes. I. Freshwater elasmobranches. Am J Physiol 98:279–295Google Scholar
  322. Smith HW (1931b) The absorption and excretion of water and salts by the elasmobranch fishes. II. Marine elasmobranchs. Am J Physiol 98:296–310Google Scholar
  323. Smith HW (1932) Water regulation and its evolution in fishes. Q Rev Biol 1:1–26CrossRefGoogle Scholar
  324. Smith RL, Paulson PC (1977) Osmoregulatory seasonality and freezing avoidance in some fishes from a subarctic eelgrass community. Copeia 1977:362–369CrossRefGoogle Scholar
  325. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman, New YorkGoogle Scholar
  326. Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258PubMedCrossRefGoogle Scholar
  327. Stanley JG, Colby PJ (1971) Effects of temperature on electrolyte balance and osmoregulation in the alewife (Alosa pseudoharengus) in fresh and sea water. Trans Am Fish Soc 100:624–638CrossRefGoogle Scholar
  328. Stanley JG, Fleming WR (1964) Excretion of hypertonic urine by a teleost. Science 144:63–64PubMedCrossRefGoogle Scholar
  329. Stanley JG, Fleming WR (1977) Failure of seawater acclimation to alter osmotic toxicity in Fundulus kansae. Comp Biochem Physiol 58A:53–56CrossRefGoogle Scholar
  330. Staurnes M (1993) Difference between summer and winter gill Na/K-ATPase activity and hypoosmoregulatory ability of seafarmed anadromous Arctic char (Salvelinus alpinus). Comp Biochem Physiol 105A:475–477CrossRefGoogle Scholar
  331. Staurnes M, Sigholt T, Asgard T, Baeverfjord G (2001) Effects of temperature shift on seawater challenge test performance in Atlantic salmon (Salmo salar) smolts. Aquaculture 201:153–159CrossRefGoogle Scholar
  332. Stuenkel EL, Hillyard SD (1981) The effects of temperature and salinity acclimation on metabolic rate and osmoregulation in the pupfish Cyprinodon salinus. Copeia 1981:411–417CrossRefGoogle Scholar
  333. Sulya LL, Box BE, Gunter G (1960) Distribution of some blood constituents in fishes from the Gulf of Mexico. Am J Physiol 199:1177–1180Google Scholar
  334. Swanson C (1998) Interactive effects of salinity on the metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J Exp Biol 201:3355–3366PubMedGoogle Scholar
  335. Takei Y, Tsukada T (2001) Ambient temperature regulates drinking and arterial pressure in eels. Zool Sci 18:963–967CrossRefGoogle Scholar
  336. Thorson TB (1967) Osmoregulation in fresh-water elasmobranches. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates and rays. Johns Hopkins, Baltimore, pp 265–270Google Scholar
  337. Thorson TB, Cowan CM, Watson DE (1967) Potamotrygon spp.: elasmobranchs with low urea content. Science 158:375–377PubMedCrossRefGoogle Scholar
  338. Thorson TB, Cowan CM, Watson DE (1973) Body fluid solutes of juveniles and adults of the euryhaline bull shark Carcharhinus leucas from freshwater and saline environments. Physiol Zool 46:29–42Google Scholar
  339. Tort L, Landri P, Altimiras J (1994) Physiological and metabolic changes of sea bream Sparus aurata to short-term acclimation at low salinity. Comp Biochem Physiol 108A:75–80CrossRefGoogle Scholar
  340. Treberg JR, Wilson CE, Richards RC, Ewart KV, Driedzic WR (2002) The freeze-avoidance response of smelt Osmerus mordax: initiation and subsequent suppression of glycerol, trimethylamine oxide and urea accumulation. J Exp Biol 205:1419–1427PubMedGoogle Scholar
  341. Turner JD, Schrag JD, DeVries AL (1985) Ocular freezing avoidance in Antarctic fish. J Exp Biol 118:121–131Google Scholar
  342. Umminger BL (1969a) Physiological studies on supercooled killifish (Fundulus heteroclitus). I. Serum inorganic constituents in relation to osmotic and ionic regulation at subzero temperatures. J Exp Zool 172:283–302PubMedCrossRefGoogle Scholar
  343. Umminger BL (1969b) Physiological studies on supercooled killifish (Fundulus heteroclitus). II. Serum organic constituents and the problem of supercooling. J Exp Zool 172:409–423CrossRefGoogle Scholar
  344. Umminger BL (1970a) Effects of subzero temperatures and trawling stress on serum osmolality in the winter flounder Pseudopleuronectes americanus. Biol Bull 139:574–579PubMedCrossRefGoogle Scholar
  345. Umminger BL (1970b) Physiological studies on supercooled killifish (Fundulus heteroclitus). III. Carbohydrate metabolism and survival at subzero temperatures. J Exp Zool 173:159–174PubMedCrossRefGoogle Scholar
  346. Umminger BL (1970c) Osmoregulation by the killifish Fundulus heteroclitus, in fresh water at temperatures near freezing. Nature 225:294–295CrossRefGoogle Scholar
  347. Umminger BL (1971a) Chemical studies of cold death in the Gulf killifish, Fundulus grandis. Comp Biochem Physiol 39A:625–632CrossRefGoogle Scholar
  348. Umminger BL (1971b) Osmoregulatory overcompensation in the goldfish, Carassius auratus at temperatures near freezing. Copeia 1971:686–691CrossRefGoogle Scholar
  349. Umminger BL (1971c) Osmoregulatory role of serum glucose in freshwater-adapted killifish (Fundulus heteroclitus) at temperatures near freezing. Comp Biochem Physiol 38A:141–145CrossRefGoogle Scholar
  350. Umminger BL (1971d) Patterns of osmoregulation in freshwater fishes at temperatures near freezing. Physiol Zool 44:20–27Google Scholar
  351. Umminger BL, Mahoney JB (1972) Seasonal changes in the serum chemistry of the winter flounder, Pseudopleuronectes americanus. Trans Am Fish Soc 101:746–748CrossRefGoogle Scholar
  352. Urist MR (1962) Calcium and other ions in blood and skeleton of Nicaraguan fresh-water shark. Science 137:984–986PubMedCrossRefGoogle Scholar
  353. Valentine DW, Miller R (1969) Osmoregulation in the California killifish, Fundulus parvipinnis. Calif Fish Game 55:20–25Google Scholar
  354. Valerio PF, Kao MH, Fletcher GL (1990) Thermal hysteresis activity in the skin of the cunner, Tautogolabrus adspersus. Can J Zool 68:1065–1067CrossRefGoogle Scholar
  355. Valerio PF, Kao MH, Fletcher GL (1992) Fish skin: an effective barrier to ice crystal propagation. J Exp Biol 164:135–151CrossRefGoogle Scholar
  356. Van Waarde A (1988) Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production. Comp Biochem Physiol 91B:207–228Google Scholar
  357. Varsamos S (2002) Tolerance range and osmoregulation in hypersaline conditions in the European sea bass (Dicentrarchus labrax). J Mar Biol Assoc UK 82:1047–1048CrossRefGoogle Scholar
  358. Virtanen E, Oikari A (1984) Effects of low acclimation temperature on salinity adaptation in the presmolt salmon, Salmo salar L. Comp Biochem Physiol 78A:387–392CrossRefGoogle Scholar
  359. Virtanen E, Salama A, Lönn B-E (1988) Adaptations in the capacity of ionic and osmotic regulation in young Baltic salmon (Salmo salar L.) in brackish waters. Comp Biochem Physiol 91A:79–86CrossRefGoogle Scholar
  360. Vislie T, Fugelli K (1975) Cell volume regulation in flounder (Platichthys flesus) heart muscle accompanying an alteration in plasma osmolality. Comp Biochem Physiol 52A:415–418CrossRefGoogle Scholar
  361. Wagner HH, Conte FP, Fessler JL (1969) Development of osmotic and ionic regulation in two races of chinook salmon Oncorhynchus tshawytscha. Comp Biochem Physiol 29:325–341PubMedCrossRefGoogle Scholar
  362. Walker BW (1961) The ecology of the Salton Sea, California, in relation to the sportfishery. Fish Bull No. 113, State of California, Department of Fish and Game, Sacramento, CAGoogle Scholar
  363. Weitzman SH (1997) Systematics of deep-sea fishes. In: Randall DJ, Farrell AP (eds) Deep-sea fishes. Fish physiology, vol 16. Academic Press, San Diego, pp 43–77CrossRefGoogle Scholar
  364. Westenfelder C, Birch FM, Baranowski RL, Rosenfeld MJ, Shiozawa DK, Kablitz C (1988) Atrial natriuretic factor and salt adaptation in the teleost fish Gila atraria. Am J Physiol (Renal Fluid Electrolyte Physiol 24) 255:F1281–F1286Google Scholar
  365. Whitfield AK (1996) A review of factors influencing fish utilization of South African estuaries. Trans R Soc S Afr 51:115–137Google Scholar
  366. Whitfield AK, Blaber SJM (1976) The effects of temperature and salinity on Tilapia rendalli Boulanger 1896. J Fish Biol 9:99–104CrossRefGoogle Scholar
  367. Wilkie MP, Morgan TP, Galvez F, Smith RW, Kajimura M, Ip YK, Wood CM (2007) The African lungfish (Protopterus dolloi): ionregulation and osmoregulation in a fish out of water. Physiol Biochem Zool 80:99–112PubMedCrossRefGoogle Scholar
  368. Withers PC, Morrison G, Guppy M (1994a) Buoyancy role of urea and TMAO in an elasmobranch fish, the Port Jackson shark, Heterdontus portusjacksoni. Physiol Zool 67:693–705Google Scholar
  369. Withers PC, Morrison G, Hefter GT, Pang T (1994b) Role of urea and methylamines in buoyancy of elasmobranches. J Exp Biol 188:175–189PubMedGoogle Scholar
  370. Wöhrmann APA (1996) Antifreeze glycopeptides and peptides in Antarctic fish species from the Weddell Sea and the Lazarev Sea. Mar Ecol Prog Ser 130:47–59CrossRefGoogle Scholar
  371. Woo NYS, Fung ACY (1981) Studies on the biology of the red sea bream, Chrysophrys major-II. Salinity adaptation. Comp Biochem Physiol 69A:237–242CrossRefGoogle Scholar
  372. Woo NYS, Wu RSS (1982) Metabolic and osmoregulatory response to reduced salinities in the red grouper, Epinephelus akaara (Temminck and Schlegel), and the black sea bream, Mylio macrocephalus (Basilowsky). J Exp Mar Biol Ecol 65:139–161CrossRefGoogle Scholar
  373. Wood CM, Bergman H, Laurent P, Maina JN, Narahara A, Walsh P (1994) Urea production, acid-base regulation and their interactions in the Lake Magadi tilapia, a unique teleost adapted to a highly alkaline environment. J Exp Biol 189:13–36PubMedGoogle Scholar
  374. Wood CM, Wilson P, Bergman HL, Bergman AN, Laurent P, Otiang’a-Owiti G, Walsh PJ (2002) Ionoregulatory strategies and the role of urea in the Magadi tilapia (Alcolapia grahami). Can J Zool 80:503–515CrossRefGoogle Scholar
  375. Wood CM, Du J, Rogers J, Brauner CJ, Richards JG, Semple JW, Murray BW, Chen X-Q, Wang Y (2007) Przewalski’s naked carp (Gymnocypris przewalskii): an endangered species taking a metabolic holiday in Lake Quinghai, China. Physiol Biochem Zool 80:59–77PubMedCrossRefGoogle Scholar
  376. Yan M, Li Z, Xiong B (2005) Preliminary results on osmolality response of pufferfish Takifugu obscurus to sudden salinity change. J Appl Ichthyol 21:156–159CrossRefGoogle Scholar
  377. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830PubMedCrossRefGoogle Scholar
  378. Yancey PH, Siebenaller JF (1999) Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. J Exp Biol 202:3597–3603PubMedGoogle Scholar
  379. Yancey PH, Somero GN (1980) Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J Exp Zool 212:205–213CrossRefGoogle Scholar
  380. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222PubMedCrossRefGoogle Scholar
  381. Yeh Y, Feeney RE (1996) Antifreeze proteins: structures and mechanisms of function. Chem Rev 96:601–617PubMedCrossRefGoogle Scholar
  382. Yoshikawa JSM, McCormick SD, Young G, Bern H (1993) Effects of salinity on chloride cells and Na+, K+-ATPase in the teleost Gillichthys mirabilis. Comp Biochem Physiol 105A:311–317CrossRefGoogle Scholar
  383. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  384. Zydlewski J, McCormick SD (1997) The loss of hyperosmoregulatory ability in migrating juvenile American shad, Alosa sapidissima. Can J Fish Aquat Sci 54:2377–2387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations