Molecular identification methods of fish species: reassessment and possible applications

Research Paper

Abstract

Fish species identification is traditionally based on external morphological features. Yet, in many cases fishes and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. This work intends to provide an updated and extensive overview on the PCR-methods for fish species identification. Among the ten main methods developed, three PCR-RFLP, PCR-FINS and PCR-specific primers have been the most used. Two other emerging methods, namely real-time PCR and microarray technology, offer new potential for quantification of DNA and simultaneous detection of numerous species, respectively. Almost 500 species have been targeted in the past decade, among which the most studied belong to gadoids, scombroids, and salmonids. The mitochondrial cytochrome b gene was by far the most targeted DNA markers. The most common applications belonged to the forensic, taxonomic, and ecological fields. At last, some key problems, such as the degradation of DNA, the reliability of sequences, and the use of scientific names, likely to be encountered during the development of molecular identification methods are described. In conclusion, the tremendous advances in molecular biology in the past 10 years has rendered possible the study of DNA from virtually any substrates, offering new perspectives for the development of various applications, which will likely continue to increase in the future.

Keywords

Mitochondrial DNA DNA barcoding Taxonomy PCR Food products Forensic 

References

  1. Ansfield M, Reaney SD, Jackman R (2000) Production of a sensitive immunoassay for detection of ruminant and porcine proteins, heated to >130°C at 2.7 bar, in compound animal feedstuffs. Food Agric Immunol 12:273–284. doi:10.1080/09540100020008146 Google Scholar
  2. Antunes A, Ramos MJ (2005) Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics 86:708–717. doi:10.1016/j.ygeno.2005.08.002 PubMedGoogle Scholar
  3. Aranishi F, Okimoto T, Ohkubo M (2005) Molecular identification of commercial spicy pollack roe products by PCR-RFLP analysis. J Food Sci 70:235–238Google Scholar
  4. Asensio L (2007) PCR-based methods for fish and fishery products authentication. Trends Food Sci Technol 18:558–566. doi:10.1016/j.tifs.2007.04.016 Google Scholar
  5. Asensio L, Montero A (2008) Analysis of fresh fish labelling in Spanish fish retail shops. Food Control 19:795–799. doi:10.1016/j.foodcont.2007.08.005 Google Scholar
  6. Asensio L, González I, García T et al (2008) Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 19:1–8. doi:10.1016/j.foodcont.2007.02.010 Google Scholar
  7. Babola O, Desvarenne S, Lacroix B et al (2004) L’identification des espèces animales dans l’alimentation humaine et animale: un exemple d’application de la technologie des puces à ADN. Bull Soc Fr Micr 19:30–36Google Scholar
  8. Balitzki-Korte B, Anslinger K, Bartsch C, Rolf (2005) Species identification by means of pyrosequencing the mitochondrial 12S rRNA gene. Int J Legal Med 119:291–294. doi:10.1007/s00414-005-0537-9 PubMedGoogle Scholar
  9. Bartlett S, Davidson W (1992) FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. Biotechniques 3:408–411Google Scholar
  10. Benesh DP, Hasu T, Suomalainen L-R et al (2006) Reliability of mitochondrial DNA in an acanthocephalan: the problem of pseudogenes. Int J Parasitol 36:247–254. doi:10.1016/j.ijpara.2005.09.008 PubMedGoogle Scholar
  11. Bensasson D, Zhang D, Hartl DL (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321. doi:10.1016/S0169-5347(01)02151-6 PubMedGoogle Scholar
  12. Birstein VJ, Doukakis P, Sorkin B et al (1998) Population aggregation analysis of three caviar-producing species of sturgeons and implications for the species identification of black caviar. Conserv Biol 12:766–775. doi:10.1046/j.1523-1739.1998.97081.x Google Scholar
  13. Blaxter M (2003) Molecular systematics: counting angels with DNA. Nature 421:122–124. doi:10.1038/421122a PubMedGoogle Scholar
  14. Blaxter M (2004) The promise of a DNA taxonomy. Philos Trans R Soc Lond B Biol Sci 359:669–679. doi:10.1098/rstb.2003.1447 PubMedGoogle Scholar
  15. Bossier P (1999) Authentication of seafood products by DNA patterns. J Food Sci 64:189–193. doi:10.1111/j.1365-2621.1999.tb15862.x Google Scholar
  16. Bower MA, Spencer M, Matsumura S et al (2005) How many clones need to be sequenced from a single forensic or ancient DNA sample in order to determine a reliable consensus sequence? Nucleic Acids Res 33:2549–2556. doi:10.1093/nar/gki550 PubMedGoogle Scholar
  17. Bucciarelli G, Golani D, Bernardi G (2002) Genetic cryptic species as biological invaders: the case of a Lessepsian fish migrant, the hardyhead silverside Atherinomorus lacunosus. J Exp Mar Biol Ecol 273:143–149. doi:10.1016/S0022-0981(02)00138-7 Google Scholar
  18. Byrkjedal I, Rees DJ, Willassen E (2007) Lumping lumpsuckers: molecular and morphological insights into the taxonomic status of Eumicrotremus spinosus (Fabricius, 1776) and Eumicrotremus eggvinii Koefoed, 1956 (Teleostei: Cyclopteridae). J Fish Biol 71:111–131. doi:10.1111/j.1095-8649.2007.01550.x Google Scholar
  19. Callejas C, Ochando MD (2001) Molecular identification (RAPD) of the eight species of the genus Barbus (Cyprinidae) in the Iberian Peninsula. J Fish Biol 59:1589–1599. doi:10.1111/j.1095-8649.2001.tb00223.x Google Scholar
  20. Carr SM, Kivlichan DS, Pepin P et al (1999) Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species. Can J Zool 77:19–26. doi:10.1139/cjz-77-1-19 Google Scholar
  21. Carrera E, García T, Céspedes A et al (2000) Differentiation of smoked Salmo salar, Oncorhynchus mykiss and Brama raii using the nuclear marker 5S rDNA. Int J Food Sci Technol 35:401–406. doi:10.1046/j.1365-2621.2000.00404.x Google Scholar
  22. Casper RM, Jarman SN, Deagle BE et al (2007) Detecting prey from DNA in predator scats: a comparison with morphological analysis, using Arctocephalus seals fed a know diet. J Exp Mar Biol Ecol 347:144–154. doi:10.1016/j.jembe.2007.04.002 Google Scholar
  23. Chakraborty A, Aranishi F, Iwatsuki Y (2007) Polymerase chain reaction-restriction fragment length polymorphism analysis for species identification of hairtail fish fillets from supermarkets in Japan. Fish Sci 73:197–201. doi:10.1111/j.1444-2906.2007.01319.x Google Scholar
  24. Chapela MJ, Sotelo CG, Pérez-Martín RI et al (2007) Comparison of DNA extraction methods from muscle of canned tuna for species identification. Food Control 18:1211–1215. doi:10.1016/j.foodcont.2006.07.016 Google Scholar
  25. Civera T (2003) Species identification and safety of fish products. Vet Res Commun 27:481–489. doi:10.1023/B:VERC.0000014205.87859.ab PubMedGoogle Scholar
  26. Comesana AS, Abella P, Sanjuan A (2003) Molecular identification of five commercial flatfish species by PCR-RFLP analysis of a 12 rRNA gene fragment. J Sci Food Agric 83:752–759. doi:10.1002/jsfa.1368 Google Scholar
  27. Comi G, Lacumi L, Rantsiou (2005) Molecular methods for the differentiation of species used in production of cod-fish can detect commercial frauds. Food Control 16:37–42. doi:10.1016/j.foodcont.2003.11.003 Google Scholar
  28. Cooper A, Wayne R (1998) New uses for old DNA. Curr Opin Biotechnol 9:49–53. doi:10.1016/S0958-1669(98)80083-9 PubMedGoogle Scholar
  29. Dalmasso A, Civera T, Bottero MT (2006) Biomolecular approaches for the identification of tuna species. Vet Res Commun 30:179–181. doi:10.1007/s11259-006-0035-7 Google Scholar
  30. Deagle B, Tollit D, Jarman S et al (2005) Molecular scatology as a tool to study diet: Analysis of prey DNA in scats from captive Steller sea lions. Mol Ecol 14:1831–1842. doi:10.1111/j.1365-294X.2005.02531.x PubMedGoogle Scholar
  31. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc B 360:1905–1916. doi:10.1098/rstb.2005.1722 Google Scholar
  32. Doiron S, Bernatchez L, Blier P (2002) A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Mol Biol Evol 19:1902–1909PubMedGoogle Scholar
  33. Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314. doi:10.1016/j.mimet.2003.11.006 PubMedGoogle Scholar
  34. Etienne M, Jerome M, Fleurence J et al (2000) Identification of fish species after cooking by SDS–PAGE and urea IEF: a collaborative study. J Agric Food Chem 48:2653–2658. doi:10.1021/jf990907k PubMedGoogle Scholar
  35. Forster P (2003) To err is human. Ann Hum Genet 67:2–4. doi:10.1046/j.1469-1809.2003.00002.x PubMedGoogle Scholar
  36. Fox CJ, Taylor MI, Pereyra R et al (2005) TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods. Mol Ecol 14:879–884. doi:10.1111/j.1365-294X.2005.02439.x PubMedGoogle Scholar
  37. Froese R, Pauly P (eds) (2008) FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/2008)
  38. Gharrett AJ, Gray AK, Heifetz J (2001) Identification of rockfish (Sebastes spp.) by restriction site analysis of the mitochondrial ND-3/ND-4 and 12S/16S rRNA gene regions. Fish Bull (Wash D C) 99:49–62Google Scholar
  39. Gilbert MT, Bandelt H-J, Hofreiter M et al (2005) Assessing ancient DNA studies. Trends Ecol Evol 20:541–544. doi:10.1016/j.tree.2005.07.005 PubMedGoogle Scholar
  40. Granadeiro JP, Silva MA (2000) The use of otoliths and vertebrae in the identification and size-estimation of fish in predator-prey studies. Cybium 24:383–393Google Scholar
  41. Greig TW, Moore MK, Woodley CM (2005) Mitochondrial gene sequences useful for species identification of western North Atlantic Ocean sharks. Fish Bull (Wash D C) 103:516–523Google Scholar
  42. Hanner RH, Gregory TR (2007) Genomic diversity research and the role of biorepositories. Cell Pres Tech 5:93–103. doi:10.1089/cpt.2007.9993 Google Scholar
  43. Harris DJ (2003) Can you bank on GenBank? Trends Ecol Evol 18:317–319. doi:10.1016/S0169-5347(03)00150-2 Google Scholar
  44. Hebert PDN, Cywinska A, Ball SL et al (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313–321. doi:10.1098/rspb.2002.2218 Google Scholar
  45. Heist EJ, Gold JR (1999) Genetic identification of sharks in the U.S. Atlantic large coastal shark fishery. Fish Bull (Wash D C) 97:53–61Google Scholar
  46. Hoelzel AR (2001) Shark fishing in fin soup. Conserv Genet 2:69–72. doi:10.1023/A:1011590517389 Google Scholar
  47. Horstkotte B, Rehbein H (2003) Fish species identification by means of restriction fragment length polymorphism and high-performance liquid chromatography. J Food Sci 68:2658–2666. doi:10.1111/j.1365-2621.2003.tb05785.x Google Scholar
  48. Hsieh HS, Hwang DF (2004) Molecular phylogenetic relationships of puffer fish inferred from partial sequences of cytochrome b gene and restriction fragment length polymorphism analysis. J Agric Food Chem 52:4159–4165. doi:10.1021/jf035462l PubMedGoogle Scholar
  49. Hubalkova Z, Kralik P, Tremlova B et al (2007) Methods of gadoid fish species identification in food and their economic impact in the Czech Republic: a review. Vet Med 52:273–292Google Scholar
  50. Iff At F (2002) Mullets of Korangi Creek, Karachi. Rec Zool Surv Pak 14:11–18Google Scholar
  51. Janzen DH (2004) Now is the time. Philos Trans R Soc Lond B Biol Sci 359:731–732. doi:10.1098/rstb.2003.1444 PubMedGoogle Scholar
  52. Jarman S, Deagle B, Gales N (2004) Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol Ecol 13:1313–1322. doi:10.1111/j.1365-294X.2004.02109.x PubMedGoogle Scholar
  53. Jérôme M, Lemaire C, Verrez-Bagnis V et al (2003) Direct sequencing method for species identification of canned sardine and sardine-type products. J Agric Food Chem 51:7326–7332. doi:10.1021/jf034652t PubMedGoogle Scholar
  54. King RA, Read DS, Traugott M et al (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963. doi:10.1111/j.1365-294X.2007.03613.x PubMedGoogle Scholar
  55. Klossa-Kilia E, Papasotiropoulos V, Kilias G et al (2002) Authentication of Messolongi (Greece) fish roe using PCR-RFLP analysis of 16s RNA mtDNA segment. Food Control 13:169–172. doi:10.1016/S0956-7135(01)00097-4 Google Scholar
  56. Kocher TD, Thomas WK, Meyer A et al (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200. doi:10.1073/pnas.86.16.6196 PubMedGoogle Scholar
  57. Kochzius M, Nölte M, Weber H et al (2008) DNA microarrays for identifying fishes. Mar Biotechnol 10:207–217. doi:10.1007/s10126-007-9068-3 PubMedGoogle Scholar
  58. Kon T, Yoshino T, Mukai T et al (2007) DNA sequences identify numerous cryptic species of vertebrate: a lesson from the gobioid fish Schindleria. Mol Phylogenet Evol 44:53–62. doi:10.1016/j.ympev.2006.12.007 PubMedGoogle Scholar
  59. Kvasnička F (2005) Capillary electrophoresis in food authenticity. J Sep Sci 28:813–825PubMedGoogle Scholar
  60. Lakra WS, Goswami M, Mohindra V, Lal KK, Punia P (2007) Molecular identification of five Indian scianids (pisces: perciformes, sciaenidae) using RAPD markers. Hydrobiologia 583:359–363Google Scholar
  61. Li Z, Gray AK, Love MS et al (2006) A key to selected rockfishes (Sebastes spp.) based on mitochondrial DNA restriction fragment analysis. Fish Bull 104:182–196Google Scholar
  62. Lin W-F, Hwang D-F (2007) Application of PCR-RFLP analysis on species identification of canned tuna. Food Control 18:1050–1057Google Scholar
  63. Lipscomb D, Platnick N, Wheeler Q (2003) The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol Evol 18:65–66Google Scholar
  64. Lockley AK, Bardsley RG (2000) DNA-based methods for food authentication. Trends Food Sci Tech 11:67–77Google Scholar
  65. Ludwig A, Congiu L, Pitra C (2003) Nonconcordant evolutionary history of maternal and paternal lineages in Adriatic sturgeon. Mol Ecol 12:3253–3264PubMedGoogle Scholar
  66. Mackie IM, Pryde SE, Gonzales-Sotelo C et al (1999) Challenges in the identification of species of canned fish. Trends Food Sci Tech 10:9–14Google Scholar
  67. Mafra I, Ferreira I, Beatriz M et al (2008) Food authentication by PCR-based methods. Eur Food Res Technol 227:649–665Google Scholar
  68. Maldini M, Marzano FN, Fortes GG et al (2006) Fish and seafood traceability based on AFLP markers: elaboration of a species database. Aquaculture 261:487–494Google Scholar
  69. Mallet J, Willmott K (2003) Taxonomy: renaissance or Tower of Babel? Trends Ecol Evol 18:57–59Google Scholar
  70. Maretto F, Reffo E, Dalvit C et al (2007) Finding 16S rRNA gene-based SNPs for the genetic traceability of commercial species belonging to Gadiformes. Ital J Anim Sci 6:161–163Google Scholar
  71. Marko PB, Lee SC, Rice AM (2004) Fisheries: mislabelling of a depleted reef fish. Nature 430:309–310PubMedGoogle Scholar
  72. Martin AP, Palumbi SR (1993) Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Mol Biol Evol 10:873–891PubMedGoogle Scholar
  73. Masri S, Rast H, Ripley T et al (2002) Detection of genetically modified coho salmon using polymerase chain reaction (PCR) amplification. J Agric Food Chem 50:3161–3164PubMedGoogle Scholar
  74. Matejusová I, Doig F, Middlemas SJ et al (2008) Using quantitative real-time PCR to detect salmonid prey in scats of grey Halichoerus grypus and harbour Phoca vitulina seals in Scotland—an experimental and field study. J Appl Ecol 45:632–640Google Scholar
  75. McDowell JR, Graves JE (2002) Nuclear and mitochondrial DNA markers for specific identification of istiophorid and xiphiid billfishes. Fish Bull 100:537–544Google Scholar
  76. Methven DA, McGowan C (1998) Distinguishing small juvenile Atlantic cod (Gadus morhua) from Greenland cod (Gadus ogac) by comparing meristic characters and discriminant function analysis of morphometric data. Can J Zool 76:1054–1062Google Scholar
  77. Michelini E, Cevenini L, Mezzanotte L et al (2007) One-step triplex-polymerase chain reaction assay fot the authentication of yellowfin (Thunnus albacares), bigeye (Thunnus obesus), and skipjack (Katsuwonus pelamis) tuna DNA from fresh, frozen, and canned tuna samples. J Agric Food Chem 55:7638–7647PubMedGoogle Scholar
  78. Millar CD, Huynen L, Subramanian S et al (2008) New developments in ancient genomics. Trends Ecol Evol 23:386–393PubMedGoogle Scholar
  79. Miraglia M, Berdal KG, Brera C (2004) Detection and traceability of genetically modified organisms in the food production chain. Food Chem Toxicol 42:1157–1180PubMedGoogle Scholar
  80. Moretti VM, Turchini GM, Bellagamba F et al (2003) Traceability issues in fishery and aquaculture products. Vet Res Comm 27:497–505Google Scholar
  81. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2:1529–1531Google Scholar
  82. Nilsson RH, Ryberg M, Kristiansson E (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE 1:e59PubMedGoogle Scholar
  83. Pääbo S, Irwin DM, Wilson AC (1990) DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265:4718–4721PubMedGoogle Scholar
  84. Pääbo S, Poinar H, Serre D et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679PubMedGoogle Scholar
  85. Paterlini M (2007) There shall be order. The legacy of Linnaeus in the age of molecular biology. EMBO Rep 8:814–816PubMedGoogle Scholar
  86. Pegg GH, Sinclair B, Briskey L et al (2006) MtDNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. Sci Mar 70:7–12Google Scholar
  87. Pepe T, Trotta M, Di Marco I et al (2007) Fish species identification in surimi-based products. J Agric Food Chem 55:3681–3685PubMedGoogle Scholar
  88. Pierce GJ, Boyle PR (1991) A review of methods for diet analysis in piscivorous marine mammals. Oceanogr Mar Biol Ann Rev (Lond) 29:409–486Google Scholar
  89. Poinar HN (2002) The genetic secrets some fossils hold. Acc Chem Res 35:676–684PubMedGoogle Scholar
  90. Politov D, Gordon N, Afanasiev K et al (2000) Identification of palearctic coregonid fish species using mtDNA and allozyme genetic markers. J Fish Biol 74:51–71CrossRefGoogle Scholar
  91. Quinteiro J, Sotelo CG, Rehbein H et al (1998) Use of mtDNA direct polymerase chain reaction (PCR) sequencing and PCR-restriction fragment length polymorphism methodologies in species identification of canned tuna. J Agric Food Chem 46:1662–1669Google Scholar
  92. Rasmussen RS, Morrissey MT (2008) DNA-based methods for the identification of commercial fish and seafood species. Compr Rev Food Sci Food Saf 7:280–295Google Scholar
  93. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of Life Data systems (www.barcodinglife.org). Mol Ecol Notes 7:355–364
  94. Redenbach Z, Taylor EB (2003) Evidence for bimodal hybrid zones between two species of charr (Pisces: Salvelinus) in northwestern North America. J Evol Biol 16:1135–1148PubMedGoogle Scholar
  95. Rehbein H (1990) Electrophoretic techniques for species identification of fishery products. Z Lebensm Unters Forsch 191:1–10Google Scholar
  96. Rehbein H, Mackie I, Pryde S et al (1999) Fish species identification in canned tuna by PCR-SSCP: validation by a collaborative study and investigation of intra-species variability of the DNA-patterns. Food Chem 64:263–268Google Scholar
  97. Reid SM, Wilson CC (2006) PCR-RFLP based diagnostic tests for Moxostoma species in Ontario. Conserv Genet 7:997–1000Google Scholar
  98. Richardson D, Vanwye J, Exum A et al (2007) High-throughput species identification: from DNA isolation to bioinformatics. Mol Ecol Notes 7:199–207Google Scholar
  99. Roelfsema JH, Peters DJ (2005) Denaturing gradient gel electrophoresis (DGGE). In: Walker JM, Rapley R (eds) Medical biomethods handbook. Humana Press, New York, pp 79–86Google Scholar
  100. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11PubMedGoogle Scholar
  101. Ruedas LA, Salazar-Bravo J, Dragoo JW (2000) The importance of being earnest: what, if anything, constitutes a “specimen examined? Mol Phylogenet Evol 17:129–132PubMedGoogle Scholar
  102. Sanjuan A, Raposo-Guillan J, Comesana A (2002) Genetic identification of Lophius budegassa and L. piscatorius by PCR-RFLP analysis of a mitochondrial tRNAGLU/Cytochrome b segment. J Food Sci 67:2644–2648Google Scholar
  103. Schander C, Willassen E (2005) What can biological barcoding do for marine biology? Mar Biol Res 1:79–83Google Scholar
  104. Schindel DE, Miller SE (2005) DNA barcoding a useful tool for taxonomists. Nature 435:17PubMedGoogle Scholar
  105. Schlick-Steiner BC, Seifert B, Stauffer C et al (2007) Without morphology, cryptic species stay in taxonomic crypsis following discovery. Trends Ecol Evol 22:391–392PubMedGoogle Scholar
  106. Seberg O, Humphries CJ, Knapp S et al (2003) Shortcuts in systematics? A commentary on DNA-based taxonomy. Trends Ecol Evol 18:63–65Google Scholar
  107. Sevilla R, Diez A, Noren M et al (2007) Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol Ecol Notes 7:730–734Google Scholar
  108. Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator-prey food-webs. Funct Ecol 19:751–762Google Scholar
  109. Sites JW, Marshall JC (2003) Delimiting species: a renaissance issue in systematic biology. Trends Ecol Evol 18:462–470Google Scholar
  110. Smith P, MCveagh S, Allain V et al (2005) DNA identification of gut contents of large pelagic fishes. J Fish Biol 67:1178–1183Google Scholar
  111. Strange R, Stepien C (2007) Yellow (Perca flavescens) and Eurasian (P. fluviatilis) perch distinguished in fried fish samples by DNA analysis. Fish Bull 105:292–295Google Scholar
  112. Strauss RE, Bond CE (1990) Taxonomic methods: morphology. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Maryland, pp 109–140Google Scholar
  113. Takeyama H, Chow S, Tsuzuki H et al (2001) Mitochondrial DNA sequence variation within and between tuna Thunnus species and its application to species identification. J Fish Biol 58:1646–1657Google Scholar
  114. Tautz D, Arctander P, Minelli A et al (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74Google Scholar
  115. Teletchea T, Maudet C, Hänni C (2005) Food and forensic molecular identification: update and challenges. Trends Biotech 23:359–366Google Scholar
  116. Teletchea T, Laudet V, Hänni C (2006) Phylogeny of the Gadidae (sensu Svetovidov, 1948) based on their morphology and two mitochondrial genes. Mol Phyl Evol 38:189–199Google Scholar
  117. Teletchea F, Bernillon J, Duffraisse M et al (2008) Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol 45:967–975Google Scholar
  118. Tinti F, Ungaro N, Pasolini P et al (2003) Development of molecular and morphological markers to improve species-specific monitoring and systematics of Northeast Atlantic and Mediterranean skates (Rajiformes). J Exp Mar Biol Ecol 288:149–165Google Scholar
  119. Tsai Y-H, Hsieh H, Chen H-C et al (2007) Histamine level and species identification of billfish meats implicated in two food-borne poisonings. Food Chem 104:1366–1371Google Scholar
  120. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  121. Ward RD, Zemlak TS, Innes BH et al (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857PubMedGoogle Scholar
  122. Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29:188–197PubMedGoogle Scholar
  123. Weder JKP, Rehbein H, Kaiszer KP (2001) On the specificity of tuna-directed primes in PCR-SSCP analysis of fish and meat. Eur Food Res Technol 213:139–144Google Scholar
  124. Wheeler QD, Raven PH, Wilson EO (2004) Taxonomy: impediment or expedient? Science 303:285PubMedGoogle Scholar
  125. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55Google Scholar
  126. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851PubMedGoogle Scholar
  127. Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc Lond Ser B Biol Sci 272:3–16Google Scholar
  128. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751PubMedGoogle Scholar
  129. Wolf C, Hübner P, Lüthy J (1999) Differentiation of sturgeon species by PCR-RFLP. Food Res Int 32:699–705Google Scholar
  130. Woolfe M, Primrose S (2004) Food forensics: using DNA technology to combat misdescription and fraud. Trends Biotechnol 22:222–226PubMedGoogle Scholar
  131. Yang D, Cannon A, Saunders S (2004) DNA species identification of archaeological salmon bone from the Pacific Northwest Coast of North America. J Archaeol Sci 31:619–631Google Scholar
  132. Zhang J, Huang L, Huo H (2004) Larval identification of Lutjanus Bloch in Nansha coral reefs by AFLP molecular method. J Exp Mar Biol Ecol 298:3–20Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.UR AFPANancy UniversitéNancyFrance

Personalised recommendations