Advertisement

Reviews in Fish Biology and Fisheries

, Volume 19, Issue 4, pp 403–430 | Cite as

Comparative analysis of reproductive traits in 65 freshwater fish species: application to the domestication of new fish species

  • Fabrice Teletchea
  • Alexis Fostier
  • Ewa Kamler
  • Jean-Noël Gardeur
  • Pierre-Yves Le Bail
  • Bernard Jalabert
  • Pascal Fontaine
Research Paper

Abstract

Based on an extensive literature search (1,000 references), the objectives of the present study were to establish a numerical clustering of temperate freshwater fish based on their reproductive traits and to evaluate whether it was possible to extrapolate zootechnical knowledge among species belonging to the same cluster. About 65 species were classified into ten homogeneous clusters from the analysis of 29 reproductive traits, among which the most important were temperature during spawning, egg incubation and larval rearing, degree-days for incubation, larval size upon hatching, spawning season, and parental care. From this typology, a rather regular continuum of reproductive clusters emerges with two obvious endpoints. Between these two extremes, species could be ordered chiefly according to temperature requirement, spawning season and parental care. In conclusion, this new typology, differing significantly from all others proposed earlier, may now serve as a possible framework to help enhancing the domestication of new species by comparison to species belonging to the same cluster.

Keywords

Classification Reproduction Temperate freshwater fish STOREFISH 

Notes

Acknowledgments

Fabrice Teletchea received a post-doctoral fellowship from the Region Lorraine. We would like to sincerely thank both the editor and one anonymous reviewer for their constructive comments on an earlier version of the manuscript.

References

  1. Bagenal TB (1971) The interrelation of the size of fish eggs, the date of spawning and the production cycle. J Fish Biol 3:207–219. doi: 10.1111/j.1095-8649.1971.tb03665.x CrossRefGoogle Scholar
  2. Balon EK (1975) Reproductive clusters of fishes: a proposal and definition. J Fish Res Board Can 32:821–864Google Scholar
  3. Bilio M (2007) Controlled reproduction and domestication in aquaculture. The current state of the art. Aquac Eur 32:2–3Google Scholar
  4. Billard R (1997) Les poissons d’eau douce des rivières de France. Delachaux & Niestlé, Lausanne, p 192Google Scholar
  5. Billard R (1981–1982) The reproductive cycle in teleost fish. Estratto dalla Rivista Italiana di Piscicoltura e Ittiopalogia 16–17:1–23Google Scholar
  6. Blanck A, Lamouroux N (2007) Large-scale intraspecific variation in life-history traits of European freshwater fish. J Biogeogr 34:862–875. doi: 10.1111/j.1365-2699.2006.01654.x CrossRefGoogle Scholar
  7. Bromage N, Porter M, Randall C (2001) The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197:63–98. doi: 10.1016/S0044-8486(01)00583-X CrossRefGoogle Scholar
  8. Brooks S, Tyler CR, Sumpter JP (1997) Egg quality in fish: what makes a good egg? Rev Fish Biol Fish 7:387–416. doi: 10.1023/A:1018400130692 CrossRefGoogle Scholar
  9. Bruslé J, Quignard JP (2001) Biologie des poissons d’eau douce européens. Editions Tec & Doc, Paris, p 624Google Scholar
  10. Chambers RC, Leggett WC (1996) Maternal influences on variation in egg sizes in temperate marine fishes. Am Zool 36:180–196Google Scholar
  11. De Silva SS, Nguyen TT, Abery NW, Amarasinghe US (2006) An evaluation of the role and impacts of alien finfish in Asian inland aquaculture. Aquac Res 37:1–17. doi: 10.1111/j.1365-2109.2005.01369.x CrossRefGoogle Scholar
  12. Duarte CM, Marbá N, Homler M (2007) Rapid domestication of marine species. Science 316:382–383. doi: 10.1126/science.1138042 CrossRefPubMedGoogle Scholar
  13. Fontaine P (2009) Développement de l’aquaculture continentale européenne et domestication de nouvelles espèces. Cah Agric (in press)Google Scholar
  14. Fostier A, Jalabert B (2004) Domestication et reproduction chez les poissons. INRA Prod Anim 17:199–204Google Scholar
  15. Froese R, Pauly D (2007) FishBase. World Wide Web electronic publicationGoogle Scholar
  16. Garland T, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208:3015–3035. doi: 10.1242/jeb.01745 CrossRefPubMedGoogle Scholar
  17. Gido KB, Schaefer JF, Pigg J (2003) Patterns of fish invasions in the great plains of North-America. Biol Conserv 118:121–131. doi: 10.1016/j.biocon.2003.07.015 CrossRefGoogle Scholar
  18. Gil L, Climent J, Nanos N, Mutke S, Ortiz I, Schiller G (2002) Cone morphology variation in Pinus canariensis Sm. Plant Syst Evol 235:35–51. doi: 10.1007/s00606-002-0218-9 CrossRefGoogle Scholar
  19. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. doi: 10.1126/science.1061967 CrossRefPubMedGoogle Scholar
  20. Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73. doi: 10.1038/417070a CrossRefPubMedGoogle Scholar
  21. Growns I (2004) A numerical classification of reproductive clusters of the freshwater fishes of south-eastern Australia and their application to river management. Fish Manag Ecol 11:369–377. doi: 10.1111/j.1365-2400.2004.00404.x CrossRefGoogle Scholar
  22. Hall SR, Mills EL (2000) Exotic species in large lakes of the world. Aquat Ecosyst Health Manag 3:105–135CrossRefGoogle Scholar
  23. Harache Y (2002) Development and diversification issues in aquaculture. A historical and dynamic view of fish culture diversification. In: Paquotte P, Mariojouls C, Young J (eds) Seafood market studies for the introduction of new aquaculture products. CIHEAM, Cahiers Options Méditerranéennes No. 59, Paris, pp 15–23Google Scholar
  24. Houde ED (1994) Differences between marine and freshwater fish larvae: implications for recruitment. ICES J Mar Sci 51:91–97. doi: 10.1006/jmsc.1994.1008 CrossRefGoogle Scholar
  25. Innal D, Erk’akan F (2006) Effects of exotic and translocated fish species in the inland waters of Turkey. Rev Fish Biol Fish 16:39–50. doi: 10.1007/s11160-006-9005-y CrossRefGoogle Scholar
  26. Jalabert B (2005) Particularities of reproduction and oogenesis in teleost fish compared to mammals. Reprod Nutr Dev 45:261–279. doi: 10.1051/rnd:2005019 CrossRefPubMedGoogle Scholar
  27. Kamler E (2002) Ontogeny of yolk-feeding fish: an ecological perspective. Rev Fish Biol Fish 12:79–103. doi: 10.1023/A:1022603204337 CrossRefGoogle Scholar
  28. Kamler E (2005) Parent-egg progeny relationships in teleost fishes: an energetics perspective. Rev Fish Biol Fish 15:399–421. doi: 10.1007/s11160-006-0002-y CrossRefGoogle Scholar
  29. Keith P, Allardi J (2001) Atlas des poissons d’eau douce de France. MNHN, Patrimoines Naturels 47, Paris, p 387Google Scholar
  30. King JR, McFarlane GA (2003) Marine fish life history strategies: applications to fishery management. Fish Manag Ecol 10:249–264. doi: 10.1046/j.1365-2400.2003.00359.x CrossRefGoogle Scholar
  31. Kolm N, Ahnesjö I (2005) Do egg size and parental care coevolve in fishes? J Fish Biol 66:1499–1515. doi: 10.1111/j.0022-1112.2005.00777.x CrossRefGoogle Scholar
  32. Kryzhanovskij SG (1949) Eco-morphological principles of development in carps, loaches and catfishes. Tr Inst Morfologii Zhivotnykh 1:5–332 In RussianGoogle Scholar
  33. Lebart L, Morineau A, Warwick KM (1984) Multivariate descriptive statistical analysis. Correspondence analysis and related techniques for large matrices. Wiley, New York, p 231Google Scholar
  34. Manchester SJ, Bullock JM (2000) The impacts of non-native species on UK biodiversity and the effectiveness of control. J Appl Ecol 37:845–864. doi: 10.1046/j.1365-2664.2000.00538.x CrossRefGoogle Scholar
  35. Mann RHK, Mills CA (1979) Demographic aspects of fish fecundity. Symp Zool Soc Lond 44:161–177Google Scholar
  36. Marchal P (2008) A comparative analysis of metiers and catch profiles for some French demersal and pelagic fleets. ICES J Mar Sci 65:674–686. doi: 10.1093/icesjms/fsn044 CrossRefGoogle Scholar
  37. McCann K, Shuter B (1997) Bioenergetics of life history strategies and the comparative allometry of reproduction. Can J Fish Aquat Sci 54:1289–1298. doi: 10.1139/cjfas-54-6-1289 CrossRefGoogle Scholar
  38. Miller TJ, Crowder LB, Rice JA, Marschall EA (1988) Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can J Fish Aquat Sci 45:1657–1670. doi: 10.1139/f88-197 CrossRefGoogle Scholar
  39. Morineau A, Aluja-Banet T (1998) Analyses en composantes principales (avec illustrations SPAD). CISIA, CERESTA, Montreuil, p 142Google Scholar
  40. Morineau A, Morin S (2000) Pratique du traitement des enquêtes. Exemple d’utilisation du Système SPAD. CISIA, CERESTA, Montreuil, p 323Google Scholar
  41. Muir J (2005) Managing to harvest? Perspectives on the potential of aquaculture. Philos Trans R Soc B 360:191–218. doi: 10.1098/rstb.2004.1572 CrossRefGoogle Scholar
  42. Muir JF, Young JA (1998) Strategic issues in new species development for aquaculture. In: Enne G, Greppi GF (eds) New species for Mediterranean aquaculture. Elsevier, Alghero, pp 22–24Google Scholar
  43. Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge M, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024. doi: 10.1038/35016500 CrossRefPubMedGoogle Scholar
  44. Nelson JS (2006) Fishes of the world, vol 4. Wiley, New York, p 624Google Scholar
  45. Pauly D, Pullin RS (1988) Hatching time in spherical, pelagic, marine fish eggs in response to temperature and egg size. Environ Biol Fish 22:261–271. doi: 10.1007/BF00004892 CrossRefGoogle Scholar
  46. Pelletier D, Ferraris J (2000) A multivariate approach for defining fishing tactics from commercial catch and effort data. Can J Fish Aquat Sci 57:51–65. doi: 10.1139/cjfas-57-1-51 CrossRefGoogle Scholar
  47. Pepin P (1991) Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can J Fish Aquat Sci 48:503–518. doi: 10.1139/f91-065 CrossRefGoogle Scholar
  48. Quéméner L, Suquet M, Mero D, Gaignon J-L (2002) Selection method of new candidates for finfish aquaculture: the case of the French Atlantic, the Channel and the North Sea coasts. Aquat Living Resour 15:293–302. doi: 10.1016/S0990-7440(02)01187-7 CrossRefGoogle Scholar
  49. Scott DB (1979) Environmental timing and the control of reproduction in fish. Symp Zool Soc Lond 44:105–132Google Scholar
  50. Teletchea F, Laudet V, Hänni C (2006) Phylogeny of the Gadidae (sensu Svetovidov 1948) based on their morphology and two mitochondrial genes. Mol Phylogenet Evol 38:189–199. doi: 10.1016/j.ympev.2005.09.001 CrossRefPubMedGoogle Scholar
  51. Teletchea F, Fostier A, Le Bail P-Y, Jalabert B, Gardeur J-N, Fontaine P (2007) STOREFISH: a new database dedicated to the reproduction of temperate freshwater teleost fishes. Cybium 31:237–245Google Scholar
  52. Teletchea F, Gardeur J-N, Kamler E, Fontaine P (2009) Comparisons of seven egg traits in temperate freshwater fish species. J Fish Biol (in press)Google Scholar
  53. Turchini GM, De Silva SS (2008) Bio-economical and ethical impacts of alien finfish culture in European inland waters. Aquac Int 16:243–272. doi: 10.1007/s10499-007-9141-y CrossRefGoogle Scholar
  54. Verdoit M, Pelletier D, Bellail R (2000) Are commercial logbook and scientific CPUE data useful for characterizing the spatial and seasonal distribution of exploited populations? The case of Celtic sea whiting. Aquat Living Resour 16:467–485. doi: 10.1016/j.aquliv.2003.07.002 CrossRefGoogle Scholar
  55. Vermeir I, Verbeke W (2006) Sustainable food consumption: exploring the Consumer “Attitude–Behavioral Intention” gap. J Agric Environ Ethics 19:169–194. doi: 10.1007/s10806-005-5485-3 CrossRefGoogle Scholar
  56. Vila-Gispert A, Moreno-Amich R (2002) Life-history patterns of 25 species from European freshwater fish communities. Environ Biol Fishes 65:387–400. doi: 10.1023/A:1021181022360 CrossRefGoogle Scholar
  57. Vila-Gispert A, Moreno-Amich R, García-Berthou E (2002) Gradients of life-history variation: an intercontinental comparison of fishes. Rev Fish Biol Fish 12:417–427. doi: 10.1023/A:1025352026974 CrossRefGoogle Scholar
  58. Ward JH (1963) Hierarchical groupings to optimize an objective function. J Am Stat Assoc 58:236–244. doi: 10.2307/2282967 CrossRefGoogle Scholar
  59. Ware DM (1975) Relation between egg size, growth, and natural mortality of larval fish. J Fish Res Board Can 32:2503–2512Google Scholar
  60. Winemiller KO (1989) Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81:225–241Google Scholar
  61. Winemiller KO, Rose KA (1992) Patterns of life-history diversification in North American fishes: implications for population regulation. Can J Fish Aquat Sci 49:2196–2218CrossRefGoogle Scholar
  62. Wootton RJ (1999) Ecology of teleost fishes. Klumer, Dordrecht, p 386Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Fabrice Teletchea
    • 1
  • Alexis Fostier
    • 2
  • Ewa Kamler
    • 3
  • Jean-Noël Gardeur
    • 1
  • Pierre-Yves Le Bail
    • 2
  • Bernard Jalabert
    • 2
  • Pascal Fontaine
    • 1
  1. 1.UR AFPA, Domestication in Inland AquacultureNancy Université INRAVandoeuvre-lès-NancyFrance
  2. 2.INRA, UR 1037-SCRIBE, IFR 140, Ouest GénopôleRennesFrance
  3. 3.Inland Fisheries InstitutePiasecznoPoland

Personalised recommendations