Reviews in Fish Biology and Fisheries

, Volume 13, Issue 4, pp 433–444 | Cite as

The pharyngeal jaw apparatus of the Cichlidae and Pomacentridae: function in feeding and sound production

  • Aaron N. Rice
  • Phillip S. Lobel


Labroid fishes (PerciformesLabroidei) possess a highly developed pharyngeal jaw apparatus (PJA). A tremendous body of literature describes the anatomy and function in feeding in these fishes. For fishes of the families Pomacentridae and Cichlidae (damselfishes and cichlids), there are also numerous descriptions of the sounds these male fishes produce in reproductive or agonistic behavioral contexts. A growing amount of acoustic, behavioral, and physiological circumstantial evidence draws support for the PJA also being the sound producing mechanism. The present review discusses the evolutionary and ecological aspects of the PJA, the anatomy and function, as well as the acoustical biology of pomacentrids and cichlids. Using existing evidence, we propose and examine the possibility that the PJA (either muscles and/or bone) is used in this behavior. Should the PJA be involved in sound production, the duality in function for both feeding and sound production creates an interrelationship between trophic biology and sexual selection. Thus, particularly in cichlids, the expansion into available trophic niches, mediated by the food processing ability of the versatile PJA may influence female mate choices and serve as a substrate for sympatric speciation.

bioacoustics communication courtship Labroidei reproductive behavior sexual selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, P. (1982) Development of the musculus levator externus IV and the musculus obliquus posterior in Haplochromis elegans Trewavas, 1933 (Teleostei: Cichlidae): a discussion of the shift hypothesis. J. Morphol. 173, 225–235.Google Scholar
  2. Aerts, P., De Vree, F. and Vandewalle, P. (1986) Pharyngeal jaw movements in Oreochromis niloticus (Teleostei: Cichlidae): preliminary results of a cineradiographic analysis. Ann. Soc. R. Zool. Belg. 116, 75–82.Google Scholar
  3. Alexander, R.M. (1966) Physical aspects of swimbladder function. Biol. Rev. 41, 141–176.Google Scholar
  4. Amorim, M.C.P. (1996) Sound production in the blue-green damselfish, Chromis viridis (Cuvier, 1830) (Pomacentridae). Bioacoustics 6, 265–272.Google Scholar
  5. Amorim, M.C.P., Fonseca, P.J. and Almada, V.C. (2003) Sound production during courtship and spawning of Oreochromis mossambicus: male–female and male–male interactions. J. Fish Biol. 62, 658–672.Google Scholar
  6. Anker, G.C. (1978) The morphology of the head-muscles of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool. 28, 234–271.Google Scholar
  7. Barry, D.T. (1987) Acoustic signals from frog skeletal muscle. Biophys. J. 51, 769–773.Google Scholar
  8. Bass, A.H. (1985) Sonic motor pathways in teleost fishes: a comparative HRP study. Brain Behav. Evol. 27, 115–131.Google Scholar
  9. Bass, A.H. and Baker, R. (1991) Evolution of homologous vocal control traits. Brain Behav. Evol. 38, 240–254.Google Scholar
  10. Bass, A.H. and Andersen, K. (1991) Inter-and intrasexual dimorphisms in the vocal control system of a teleost fish: motor axon number and size. Brain Behav. Evol. 37, 204–214.Google Scholar
  11. Bass, A.H., Marchaterre, M.A. and Baker, R. (1994) Vocalacoustic pathways in a teleost fish. J. Neurosci. 14, 4025–4039.Google Scholar
  12. Bass, A.H., Bodnar, D.A. and Marchaterre, M.A. (2000) Midbrain acoustic circuitry in a vocalizing fish. J. Comp. Neurol. 419, 505–531.Google Scholar
  13. Brozovich, F.V. and Pollack, G.H. (1983) Muscle contraction generates discrete sound bursts. Biophys. J. 41, 35–40.Google Scholar
  14. Burkenroad, M.D. (1930) Sound production in the Haemulidae. Copeia 1930, 17–18.Google Scholar
  15. Burkenroad, M.D. (1931) Notes on the sound-producing marine fishes of Louisiana. Copeia 1931, 20–28.Google Scholar
  16. Carlson, B.A. and Bass, A.H. (2000) Sonic/vocal motor pathways in squirrelfish (Teleostei, Holocentridae). Brain Behav. Evol. 56, 14–28.Google Scholar
  17. Chen, K.C. and Mok, H.K. (1988) Sound production in the anemonefishes, Amphiprion clarkii and A. frenatus (Pomacentridae), in captivity. Jpn. J. Ichthyol. 35, 90–97.Google Scholar
  18. Claes, H. and Aerts, P. (1984) Note on the compound lower pharyngeal jaw operators in Astatotilapia elegans (Trewavas), 1933(Teleostei: Cichlidae). Neth. J. Zool. 34, 210–214.Google Scholar
  19. Clements, K.D., Alfaro, M.E., Fessler, J.L. and Westneat, M.W. (in press) Relationships of the temperate Australasian labrid fish tribe Odacini (Perciformes; Teleostei). Mol. Phylogen. Evol. Google Scholar
  20. Connaughton, M., Taylor, M. and Fine, M. (2000) Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation. J. Exp. Biol. 203, 1503–1512.Google Scholar
  21. Courtenay, W.R., Jr. (1971) Sexual dimorphism of the sound producing mechanism of the striped cusk-eel, Rissola marginata (Pisces: Ophidiidae). Copeia 1971, 259–268.Google Scholar
  22. Demski, L.S., Gerald, J.W. and Popper, A.N. (1973) Central and peripheral mechanisms of teleost sound production. Amer. Zool. 13, 1141–1167.Google Scholar
  23. Dobrin, M.B. (1947) Measurements of underwater noise produced by marine life. Science 105, 19–23.Google Scholar
  24. Dominey, W.J. (1984) Effects of sexual selection and life history on speciation: species flocks in African cichlids and Hawaiian Drosophila. In: Echelle, A.A. and Kornfield, I. (eds.), Evolution of Species Flocks. University of Maine Press, Orono, ME, pp. 231–250.Google Scholar
  25. Dorai Raj, B.S. (1960) On the production of underwater sound by Therapon jarbua. Curr. Sci. 29, 277–278.Google Scholar
  26. Emery, A.R. (1973) Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. Mar. Sci. 23, 649–770.Google Scholar
  27. Farias, I.P., Orti, G. and Meyer, A. (2000) Total evidence: molecules, morphology and the phylogenetics of cichlid fishes. J. Exp. Zool. 288, 76–92.Google Scholar
  28. Fine, M.L., Malloy, K.L., King, C.B., Mitchell, S.L. and Cameron, T.M. (2001) Movement and sound generation by the toadfish swimbladder. J. Comp. Physiol. A 187, 371–379.Google Scholar
  29. Fish, M.P. (1948) Sonic Fishes of the Pacific. Woods Hole Oceanographic Institution, Woods Hole, MA, 144 pp.Google Scholar
  30. Fish, M.P. (1954) The character and significance of sound production among fishes of the western North Atlantic. Bull. Bingham Oceanogr. Coll. 24, 1–109.Google Scholar
  31. Frangioni, J.V., Kwan-Gett, T.S., Dobrunz, L.E. and McMahon, T.A. (1987) The mechanism of low-frequency sound production in muscle. Biophys. J. 51, 775–783.Google Scholar
  32. Gainer, H., Kusano, K. and Mathewson, R.F. (1965) Electrophysiological and mechanical properties of squirrelfish sound-producing muscle. Comp. Biochem. Physiol. 14, 661–671.Google Scholar
  33. Galis, F. (1992) A model for biting in the pharyngeal jaws of a cichlid fish: Haplochromis piceatus. J. Theor. Biol. 155, 343–368.Google Scholar
  34. Galis, F. (1993) Interactions between the pharyngeal jaw apparatus, feeding behaviour and ontogeny in the cichlid fish, Haplochromis piceatus: a study of morphological constraints in evolutionary ecology. J. Exp. Zool. 267, 137–154.Google Scholar
  35. Galis, F. and Drucker, E.G. (1996) Pharyngeal biting mechanics in centrarchid and cichlid fishes: insights into a key evolutionary innovation. J. Evol. Biol. 9, 641–670.Google Scholar
  36. Galis, F. and Snelderwaard, P. (1997) A novel biting mechanism in damselfishes (Pomacentridae): the pushing up of the lower pharyngeal jaw by the pectoral girdle. Neth. J. Zool. 47, 405–410.Google Scholar
  37. Gobalet, K.W. (1989) Morphology of the parrotfish pharyngeal jaw apparatus. Amer. Zool. 29, 319–331.Google Scholar
  38. Gould, S.J. and Vrba, E.S. (1982) Exaptation–a missing term in the science of form. Paleobiology 8, 4–15.Google Scholar
  39. Greenwood, P.H. (1965) Environmental effects on the pharyngeal mill of a cichlid fish, Astatoreochromis alluaudi and their taxonomic implications. Proc. Linn. Soc. Lond. 176, 1–10.Google Scholar
  40. Greenwood, P.H. (1973) Morphology, endemism and speciation in African cichlid fishes. Verh. dt. Zool. Ges. Mainz. 66, 115–124.Google Scholar
  41. Greenwood, P.H. (1991) Speciation: the process. In: Keenleyside, M.H.A. (ed.), Cichlid Fishes: Behaviour, Ecology and Evolution. Chapman & Hall, London, pp. 86–102.Google Scholar
  42. Hazlett, B. and Winn, H.E. (1962) Sound producing mechanism of the Nassau grouper, Epinephelus striatus. Copeia 1962, 447–449.Google Scholar
  43. Holstvoogd, C. (1965) The pharyngeal bones and muscles in Teleostei, a taxonomic study. Proc. Konk. Akad. Wetensch., Ser. C. 68, 209–218.Google Scholar
  44. Huysseune, A. (1995) Phenotypic plasticity in the lower pharyngeal jaw dentition of Astatoreochromis alluaudi (Teleostei: Cichlidae). Arch. Oral Biol. 40, 1005–1014.Google Scholar
  45. Kaufman, L.S. and Liem, K.F. (1982) Fishes of the suborder Labroidei (Pisces: Perciformes): phylogeny, ecology and evolutionary significance. Breviora 472, 1–19.Google Scholar
  46. Kenyon, T.N., Ladich, F. and Yan, H.Y. (1998) A comparative study of hearing ability in fishes: the auditory brainstem response approach. J. Comp. Physiol. A 182, 307–318.Google Scholar
  47. Knapp, R., Marchaterre, M.A. and Bass, A.H. (1999) Early development of the motor and premotor circuitry of a sexually dimorphic vocal pathway in a teleost fish. J. Neurobiol. 38, 475–490.Google Scholar
  48. Kornfield, I. and Smith, P.M. (2000) African cichlid fishes: model systems for evolutionary biology. Ann. Rev. Ecol. Syst. 31, 163–196.Google Scholar
  49. Ladich, F. and Bass, A.H. (1998) Sonic/vocal motor pathways in catfishes: comparisons with other teleosts. Brain Behav. Evol. 51, 315–330.Google Scholar
  50. Lanzing, W.J.R. (1974) Sound production in the cichlid Tilapia mossambica Peters. J. Fish Biol. 6, 341–347.Google Scholar
  51. Lauder, G.V. (1983) Functional design and evolution of the pharyngeal jaw apparatus in euteleostean fishes. Zool. J. Linn. Soc. 77, 1–38.Google Scholar
  52. Lauder, G.V. and Liem, K.F. (1983) The evolution and interrelationships of the actinopterygian fishes. Bull. Mus. Comp. Zool. 150, 95–197.Google Scholar
  53. Liem, K.F. (1973) Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22, 425–441.Google Scholar
  54. Liem, K.F. (1986) The pharyngeal jaw apparatus of the Embiotocidae (Teleostei): a functional and evolutionary perspective. Copeia 1986, 311–323.Google Scholar
  55. Liem, K.F. (1991) Functional morphology. In: Keenleyside, M.H.A. (ed.), Cichlid Fishes: Behaviour, Ecology and Evolution. Chapman & Hall, London, pp. 129–149.Google Scholar
  56. Liem, K.F. and Osse, J.W.M. (1975) Biological versatility, evolution and food resource exploitation in African cichlid fishes. Am. Zool. 15, 427–454.Google Scholar
  57. Liem, K.F. and Greenwood, P.H. (1981) A functional approach to the phylogeny of the pharyngognath teleosts. Amer. Zool. 21, 83–101.Google Scholar
  58. Liem, K.F. and Sanderson, S.L. (1986) The pharyngeal jaw apparatus of labrid fishes: a functional morphological perspective. J. Morphol. 187, 143–158.Google Scholar
  59. Lindstedt, S.L., McGlothlin, T., Percy, E. and Pifer, J. (1998) Task-specific design of skeletal muscle: balancing muscle structural composition. Comp. Biochem. Physiol. B 120, 35–40.Google Scholar
  60. Lobel, P.S. (1998) Possible species specific courtship sounds by two sympatric cichlid fishes in Lake Malawi, Africa. Environ. Biol. Fish. 52, 443–452.Google Scholar
  61. Lobel, P.S. (2001a) Acoustic behavior of cichlid fishes. J. Aquaricult. Aquat. Sci. 9, 89–108.Google Scholar
  62. Lobel, P.S. (2001b) Fish bioacoustics and behavior: passive acoustic detection and the application of a closed-circuit rebreather for field study. Mar. Tech. Soc. J. 35, 19–28.Google Scholar
  63. Lobel, P.S. and Mann, D.A. (1995) Spawning sounds of the damselfish, Dascyllus albisella (Pomacentridae) and relationship to male size. Bioacoustics 6, 187–198.Google Scholar
  64. Lobel, P.S. and Kerr, L.M. (1999) Courtship sounds of the Pacific Damselfish, Abudefduf sordidus (Pomacentridae). Biol. Bull. 197, 242–244.Google Scholar
  65. Luh, H.K. and Mok, H.K. (1986) Sound production in the domino damselfish, Dascyllus trimaculatus (Pomacentridae) under laboratory conditions. Jpn. J. Ichthyol. 33, 70–74.Google Scholar
  66. Mann, D.A. and Lobel, P.S. (1995) Passive acoustic detection of sounds produced by the damselfish, Dascyllus albisella (Pomacentridae). Bioacoustics 6, 199–213.Google Scholar
  67. Mann, D.A. and Lobel, P.S. (1997) Propagation of damselfish (Pomacentridae) courtship sounds. J. Acoust. Soc. Am. 101, 3783–3791.Google Scholar
  68. Mann, D.A. and Lobel, P.S. (1998) Acoustic behavior of the damselfish Dascyllus albisella: behavioral and geographic variation. Environ. Biol. Fish. 51, 421–428.Google Scholar
  69. Marshall, N.B. (1962) The biology of sound-producing fishes. Symp. Zool. Soc. Lond. 7, 45–60.Google Scholar
  70. McClelland, B.E., Wilczynski, W. and Rand, A.S. (1997) Sexual dimorphism and species differences in the neurophysiology and morphology of the acoustic communication system of two neotropical hylids. J. Comp. Physiol. A 180, 451–462.Google Scholar
  71. Moulton, J.M. (1958) The acoustical behavior of some fishes in the Bimini area. Biol. Bull. 114, 357–374.Google Scholar
  72. Myrberg, A.A., Jr. (1986) Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim. Behav. 34, 913–923.Google Scholar
  73. Myrberg, A.A., Jr. and Spires, J.Y. (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J. Comp. Physiol. A 140, 135–144.Google Scholar
  74. Myrberg, A.A., Jr., Kramer, E. and Heinecke, P. (1965) Sounds produced by cichlid fishes. Science 149, 555–558.Google Scholar
  75. Myrberg, A.A., Jr., Ha, S.J. and Shamblott, M.J. (1993) The sounds of bicolor damselfish (Pomacentrus partitus): predictors of body size and a spectral basis for individual recognition and assessment. J. Acoust. Soc. Am. 94, 3067–3070.Google Scholar
  76. Nelissen, M.H.J. (1977) Sound production by Haplochromis burtoni (Gu¨ nther) and Tropheus moorii Boulenger (Pisces, Cichlidae). Ann. Soc. R. Zool. Belg. 106, 155–166.Google Scholar
  77. Nelson, G.J. (1967) Gill arches of some teleostean fishes of the families Girellidae, Pomacentridae, Embiotocidae, Labridae and Scaridae. J. Nat. Hist. 1, 289–293.Google Scholar
  78. Oliver, S.J. (2001) Mate choice and sexual selection in Domino damselfish, Dascyllus albisella. Ph.D. Dissertation, Boston University, Boston, MA, 220 pp.Google Scholar
  79. Ono, R.D. and Kaufman, L.S. (1983) Muscle fiber types and functional demands in feeding mechanisms of fishes. J. Morphol. 177, 69–87.Google Scholar
  80. Oster, G. and Jaffe, J.S. (1980) Low frequency sounds from sustained contraction of human skeletal muscle. Biophys. J. 30, 119–128.Google Scholar
  81. Pennypacker, K.R., Fine, M.L. and Mills, R.R. (1985) Sexual differences and steroid-induced changes in metabolic activity in toadfish sonic muscle. J. Exp. Zool. 236, 259–264.Google Scholar
  82. Quenouille, B., Bermingham, E. and Planes, S. (2004) Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol. Phylogen. Evol. 31, 66–88.Google Scholar
  83. Rice, A.N. (2002) Physiology and functional morphology of sound producing mechanisms in labroid fishes. M.A. Thesis, Boston University, Boston, MA, 66 pp.Google Scholar
  84. Rice, A.N. and Lobel, P.S. (2002) Enzyme activities of pharyngeal jaw musculature in the cichlid Tramitichromis intermedius: implications for sound production in cichlid fishes. J. Exp. Biol. 205, 3519–3523.Google Scholar
  85. Rice, A.N., Portnoy, D.S., Kaatz, I.M. and Lobel, P.S. (2001) Differentiation of pharyngeal muscles on the basis of enzyme activities in the cichlid Tramitichromis intermedius. Biol. Bull. 201, 258–260.Google Scholar
  86. Ripley, J.L. (2001) Ontogenetic differences in the reproductive behavior, sound production and hearing sensitivity in the Lake Malawi cichlid, Tramitichromis intermedius. M.A. Thesis, Boston University Marine Program, Woods Hole, 265 pp.Google Scholar
  87. Ripley, J.L. and Lobel, PS. in press. Correlation of acoustic and visual signals in the cichlid fish, Tramitichromis intermedius. Environ. Biol. Fish. Google Scholar
  88. Ripley, J.L., Lobel, P.S. and Yan, H.Y. (2002) Correlation of sound production with hearing sensitivity in the Lake Malawi cichlid, Tramitichromis intermedius. Bioacoustics 12, 238–240.Google Scholar
  89. Rome, L.C. and Lindstedt, S.L. (1998) The quest for speed: muscles built for high-frequency contractions. News Physiol. Sci. 13, 261–268.Google Scholar
  90. Rome, L.C., Syme, D.A., Hollingworth, S., Lindstedt, S.L. and Baylor, S.M. (1996) The whistle and the rattle: the design of sound producing muscles. Proc. Natl. Acad. Sci. USA 93, 8095–8100.Google Scholar
  91. Rose, J.A. (1961) Anatomy and sexual dimorphism of the swim bladder and vertebral column in Ophidion holbrooki (Pisces: Ophidiidae). Bull. Mar. Sci. Gulf. Carib. 11, 280–308.Google Scholar
  92. Rosen, D.E. and Patterson, C. (1990) On Mu¨ ller's and Cuvier's concepts of pharyngognath and labyrinth fishes and the classification of percomorph fishes, with an atlas of percomorph dorsal gill arches. Amer. Mus. Novit. 2983, 1–57.Google Scholar
  93. Santiago, J.A. and Castro, J.J. (1997) Acoustic behaviour of Abudefduf luridus. J. Fish Biol. 51, 952–959.Google Scholar
  94. Schwarz, A. (1974) The inhibition of aggressive behavior by sound in the cichlid fish, Cichlasoma centrarchus. Z. Tierpsychol. 35, 508–517.Google Scholar
  95. Schwarz, A.L. (1980) Sound production and associated behavior in a cichlid fish, Cichlasoma centrarchus. 2. Breeding pairs. Environ. Biol. Fish. 5, 335–342.Google Scholar
  96. Seehausen, O., Mayhem, P.J. and van Alphen, J.J.M. (1999) Evolution of colour pattern in East African cichlid fish. J. Evol. Biol. 12, 514–534.Google Scholar
  97. Skoglund, C.R. (1961) Functional analysis of swim-bladder muscles engaged in sound production of the toadfish. J. Biophys. Biochem. Cytol. 10, 187–200.Google Scholar
  98. Smits, J.D., Witte, F. and Van Veen, F.G. (1996a) Functional changes in the anatomy of the pharyngeal jaw apparatus of Astatoreochromis alluaudi (Pisces, Cichlidae) and their effects on adjacent structures. Biol. J. Linn. Soc. 59, 389–409.Google Scholar
  99. Smits, J.D., Witte, F. and Povel, G.D.E. (1996b) Differences between inter-and intraspecific architectonic adaptations to pharyngeal mollusc crushing in cichlid fishes. Biol. J. Linn. Soc. 59, 367–387.Google Scholar
  100. Stauffer, J.R.J. and Kellogg, K.A. (1996) Sexual selection in Lake Malawi cichlids. The Cichlids Yearbook 6, 23–28.Google Scholar
  101. Steinberg, J.C., Cummings, W.C., Brahy, B.D. and MacBain, J.Y. (1965) Further bio-acoustic studies off the west coast of north Bimini, Bahamas. Bull. Mar. Sci. 15, 942–963.Google Scholar
  102. Stiassny, M.L.J. and Jensen, J.S. (1987) Labroid intrarelationships revisited: morphological complexity, key innovations and the study of comparative diversity. Bull. Mus. Comp. Zool. 151, 269–319.Google Scholar
  103. Streelman, J.T. and Karl, S.A. (1997) Reconstructing labroid evolution with single-copy nuclear DNA. Proc. Roy. Soc. Lond. B. 264, 1011–1020.Google Scholar
  104. Takemura, A. (1983) Studies on the underwater sound-VIII. Acoustical behaviour of clownfishes (Amphirion spp.). Bull. Fac. Fish. Nagasaki Univ., 21–27.Google Scholar
  105. Tang, K.L. (2001) Phylogenetic relationships among damselfishes (Teleostei: Pomacentridae) as determined by mitochondrial DNA data. Copeia 2001, 591–601.Google Scholar
  106. Tavolga, W.N. (1965) Review of marine bio-acoustics. Naval Training Device Center Report No. 1212–1, 1–100.Google Scholar
  107. Tavolga, W.N. (1974) Signal/noise ratio and the critical band in fishes. J. Acoust. Soc. Am. 55, 1323–1333.Google Scholar
  108. Taylor, M. and Mansueti, R.J. (1960) Sounds produced by very young crevalle jack, Caranx hippos, from the Maryland seaside. Chesapeake Sci. 1, 115–116.Google Scholar
  109. Vandewalle, P., Parmentier, E. and Chardon, M. (2000) The branchial basket in teleost feeding. Cybium 24, 319–342.Google Scholar
  110. Walsh, P.J., Bedolla, C. and Mommsen, T.P. (1989) Scaling and sex-related differences in toadfish (Opsanus beta) sonic muscle enzymatic activities. Bull. Mar. Sci. 45, 68–75.Google Scholar
  111. Winn, H.E. and Marshall, J.D. (1963) Sound-producing organ of the squirrelfish, Holocentrus rufus. Physiol. Zool. 36, 34–44.Google Scholar
  112. Winterbottom, R. (1974) A descriptive synonymy of the striated muscles of the Teleostei. Proc. Acad. Nat. Sci. Phila. 125, 225–317.Google Scholar
  113. Witte, F. (1984) Consistency and functional significance of morphological differences between wild-caught and domestic Haplochromis squamipinnis (Pisces, Cichlidae). Neth. J. Zool. 34, 596–612.Google Scholar
  114. Witte, F. and Barel, C.D.N. (1976) The comparative functional morphology of the pharyngeal jaw apparatus of piscivorous and intrapharyngeal mollusc-crushing Haplochromis species. Rev. Trav. Inst. Peches marit. 40, 793–796.Google Scholar
  115. Witte, F., Barel, C.D.N. and Hoogerhoud, R.J.C. (1990) Phenotypic plasticity of anatomical structures and its ecomorphological significance. Neth. J. Zool. 40, 278–298.Google Scholar
  116. Yamaoka, K. (1978) Pharyngeal jaw structure in labrid fish. Pub. Seto Mar. Biol. Lab. 24, 409–426.Google Scholar
  117. Yamaoka, K. (1980) Some pharyngeal jaw muscles of Calotomus japonicus (Scaridae, Pisces). Pub. Seto Mar. Biol. Lab. 25, 315–322.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Aaron N. Rice
    • 1
    • 2
  • Phillip S. Lobel
    • 1
  1. 1.Boston University Marine ProgramMarine Biological LaboratoryWoods HoleUSA
  2. 2.Department of Zoology, Division of FishesField Museum of Natural HistoryChicagoUSA

Personalised recommendations