International Review of Education

, Volume 60, Issue 1, pp 99–122 | Cite as

Educating the adult brain: How the neuroscience of learning can inform educational policy

  • Victoria C. P. Knowland
  • Michael S. C. Thomas
Article

Abstract

The acquisition of new skills in adulthood can positively affect an individual’s quality of life, including their earning potential. In some cases, such as the learning of literacy in developing countries, it can provide an avenue to escape from poverty. In developed countries, job retraining in adulthood contributes to the flexibility of labour markets. For all adults, learning opportunities increase participation in society and family life. However, the popular view is that adults are less able to learn for an intrinsic reason: their brains are less plastic than in childhood. This article reviews what is currently known from neuroscientific research about how brain plasticity changes with age, with a particular focus on the ability to acquire new skills in adulthood. Anchoring their review in the examples of the adult acquisition of literacy and new motor skills, the authors address five specific questions: (1) Are sensitive periods in brain development relevant to learning complex educational skills like literacy? (2) Can adults become proficient in a new skill? (3) Can everyone learn equally effectively in adulthood? (4) What is the role of the learning environment? (5) Does adult education cost too much? They identify areas where further research is needed and conclude with a summary of principles for enhancing adult learning now established on a neuroscience foundation.

Keywords

Lifelong learning Adult education Adult leaning Adult literacy Brain plasticity Sensitive periods Educational neuroscience 

Résumé

Former le cerveau adulte : comment les neurosciences de l’apprentissage peuvent éclairer les politiques éducatives – L’acquisition de nouvelles compétences à l’âge adulte peut avoir une influence positive sur la qualité de la vie d’un individu, y compris son potentiel de revenus. Dans certaines situations, tels que l’alphabétisation dans les pays en développement, elle peut permettre de sortir de la pauvreté. Dans les pays industrialisés, la reconversion professionnelle à l’âge adulte contribue à la flexibilité des marchés du travail. Chez tous les adultes, l’apprentissage augmente leur participation à la société et à la vie familiale. Néanmoins, l’opinion générale veut que les adultes soient moins aptes à apprendre, et ce pour une raison intrinsèque : leur cerveau serait moins malléable que dans l’enfance. Les auteurs recensent les connaissances actuelles de la recherche neuroscientifique sur l’évolution de la flexibilité du cerveau avec l’âge, en particulier sur la capacité d’acquérir de nouvelles compétences à l’âge adulte. Appuyant leur examen sur des exemples de l’acquisition des compétences de base et fondamentales chez les adultes, les auteurs traitent cinq questions spécifiques : (1) Les périodes sensibles au cours du développement cérébral affectent-elles l’apprentissage de compétences éducatives complexes telles que l’alphabétisation ? (2) Les adultes peuvent-ils devenir chevronnés dans une nouvelle compétence ? (3) Tous les adultes apprennent-ils avec la même efficacité ? (4) Quel est le rôle de l’environnement éducatif ? (5) Les coûts de l’éducation des adultes sont-ils trop élevés ? Les auteurs identifient les domaines appelant des études plus poussées et concluent par une synthèse des principes valorisant l’apprentissage des adultes désormais fondé sur une base neuroscientifique.

References

  1. Abadzi, H. (2003). Improving adult literacy outcomes: Lessons from cognitive research for developing countries. Washington, D.C.: The World Bank.CrossRefGoogle Scholar
  2. Abadzi, H. (2012). Can adults become fluent readers in newly learned scripts? Education Research International, 2012. Article ID 710785, doi: 10.1155/2012/710785.
  3. Abe, M., Schambra, H., Wassermann, E. M., Luckenbaugh, D., Schweighofer, N., & Cohen, L. G. (2011). Reward improves long-term retention of a motor memory through induction of offline memory gains. Current Biology, 21(7), 557–562.CrossRefGoogle Scholar
  4. Aberg, M. A., Pedersen, N. L., Toren, K., Svartengren, M., Backstrand, B., Johnsson, T., et al. (2009). Cardiovascular fitness is associated with cognition in young adulthood. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 106(49), 20906–20911.CrossRefGoogle Scholar
  5. Adeladza, A. T. (2009). The influence of socio-economic and nutritional characteristics on child growth in Kwale district of Kenya. African Journal of Food, Agriculture, Nutrition and Development, 9(7), 1570–1590.Google Scholar
  6. Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935.CrossRefGoogle Scholar
  7. Avery, T., Sanchez, L. & Froud, K. (2013). Word reading automaticity in Spanish-speaking adult neoliterates: An ERP Study. Poster presented at Cognitive Neuroscience Society Annual Meeting, 1316 April. San Francisco, USA.Google Scholar
  8. Barth, M., Hirsch, H. V. B., Meinertzhagen, I. A., & Heisenberg, M. (1997). Experience dependent developmental plasticity in the optic lobe of Drosophila melanogaster. Journal of Neuroscience, 17, 1493–1504.Google Scholar
  9. Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., & Hensch, T. K. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience, 30(45), 14964–14971.CrossRefGoogle Scholar
  10. Beilock, S. L., Carr, T. H., MacMahon, C., & Starkes, J. L. (2002). When paying attention becomes counterproductive: Impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. Journal of Experimental Psychology: Applied, 8(1), 6–16.Google Scholar
  11. Bengtsson, S. L., Nagym, Z., Skare, S., Forsman, L., Forssberg, H., & Ullen, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148–1150.CrossRefGoogle Scholar
  12. Bhargava, A. (2001). Nutrition, health, and economic development: Some policy priorities. Food & Nutrition Bulletin, 22(2), 173–177.Google Scholar
  13. Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2006). Testing the limits of cognitive plasticity in older adults: Application to attentional control. Acta Pyschologica, 123(3), 261–278.CrossRefGoogle Scholar
  14. Birch, E. E., & Stager, D. R. (1996). The critical period for surgical treatment of dense congenital unilateral cataract. Investigative Ophthalmology & Visual Science, 37(8), 1532–1538.Google Scholar
  15. BIS (Department for Business Innovation and Skills). (2009). Skills for life: Changing lives. London, UK: BIS.Google Scholar
  16. Boyke, J., Driemeyer, J., Gaser, C., Buchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. The Journal of Neuroscience, 28(28), 7031–7035.CrossRefGoogle Scholar
  17. Brans, R. G. H., Kahn, S., Schnack, H. G., van Baal, G. C., Posthuma, D., van Haren, Lepage, C., N. E. M., Lerch, J. P., Collins, L., Evans, A. C., Boomsma, D. I. & Hulshoff Pol, H. E. (2010). Brian plasticity and intellectual ability are influenced by shared genes. The Journal of Neuroscience, 30(16), 5519–1124.Google Scholar
  18. Brenowitz, E. A., & Beecher, M. D. (2005). Song learning in birds: Diversity and plasticity, opportunities and challenges. Trends in Neurosciences, 28(3), 127–132.CrossRefGoogle Scholar
  19. Bus, A. G., & van Ijzendoorn, M. H. (1999). Phonological awareness and early reading: A meta-analysis of experimental training studies. Journal of Educational Psychology, 91(3), 403–414.CrossRefGoogle Scholar
  20. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology of Aging, 17(1), 85–100.CrossRefGoogle Scholar
  21. Cannonieria, G. C., Bonilhab, L., Fernandesa, P. T., Cendesa, F., & Lia, L. M. (2007). Practice and perfect: length of training and structural brain changes in experienced typists. NeuroReport, 18(10), 1063–1066.CrossRefGoogle Scholar
  22. Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125.CrossRefGoogle Scholar
  23. Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498–502.CrossRefGoogle Scholar
  24. Chen, E., Cohen, S., & Miller, G. E. (2010). How low socioeconomic status affects 2-year hormonal trajectories in children. Psychological Science, 21(1), 31–37.CrossRefGoogle Scholar
  25. Constantino, R. (2005). Print environments between high and low socioeconomic status communities. Teacher Librarian, 32(3), 22–25.Google Scholar
  26. Cotman, C. W., & Berctold, N. C. (2002). Exercise: A behavioural intervention to enhance brain health and plasticity. Trends in Neurosciences, 25(6), 295–301.CrossRefGoogle Scholar
  27. Craik, F. I. M., & Bialystock, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3), 131–138.CrossRefGoogle Scholar
  28. Cunha, F., Heckman, J. J., & Schennach, S. M. (2010). Estimating the technology of cognitive and non-cognitive skill formation. Econometrica, 78(3), 883–931.CrossRefGoogle Scholar
  29. Dani, J., Burrill, C., & Demmig-Adams, B. (2005). The remarkable role of nutrition in learning and behavior. Nutrition & Food Science, 35(4), 258–263.CrossRefGoogle Scholar
  30. Darmon, N., & Drewnowski, A. (2008). Does social class predict diet quality? American Journal of Clinical Nutrition, 87(5), 1107–1117.Google Scholar
  31. Debas, K., Carriera, J., Orbana, P., Barakat, M., Lungua, O., Vandewallea, G., et al. (2010). Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 107(41), 17839–17844.CrossRefGoogle Scholar
  32. Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398.CrossRefGoogle Scholar
  33. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., et al. (2010a). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364.CrossRefGoogle Scholar
  34. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., et al. (2010b). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364.CrossRefGoogle Scholar
  35. Dockrell, J., & Shield, B. (2012). The impact of sound field systems on learning and attention in elementary school classrooms. Journal of Speech, Language, and Hearing Research, 55, 1163–1176.CrossRefGoogle Scholar
  36. Doyon, J., Korman, M., Morin, A., Dostie, V., Hadj Tahar, A., Benali, H., et al. (2009). Contribution of night and day sleep vs. simple passage of time to the consolidation of motor sequence and visuomotor adaptation learning. Experimental Brain Research, 195(1), 15–26.CrossRefGoogle Scholar
  37. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311–312.CrossRefGoogle Scholar
  38. Duflo, E., Dupas, P. & Kremer, M. (2008). Peer effects and the impact of tracking: Evidence from a randomized evaluation in Kenya. CEPR Discussion Paper No. DP7043. Available at the Social Sciences Research Network (SSRN): http://ssrn.com/abstract=1311167.
  39. Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., et al. (2009). Aerobic fitness is associated with hip-pocampal volume in elderly humans. Hippocampus, 19(10), 1030–1039.CrossRefGoogle Scholar
  40. Fischer, S., Hallschmid, M., Elsner, A. L., & Born, J. (2002). Sleep forms memory for finger skills. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(18), 11987–11991.CrossRefGoogle Scholar
  41. Floyer-Lea, A., & Matthews, P. M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. Journal of Neurophysiology, 94(1), 512–518.CrossRefGoogle Scholar
  42. Gervain, J., Vines, B. W., Chen, L. M., Seo, R. J., Hensch, T. K., Werker, J. F. & Young, A. H. (2013). Valporate reopens critical period learning of absolute pitch. Frontiers in Systems Neuroscience, 7(102). doi: 10.3389/fnsys.2013.00102.
  43. Greenberg, D., Ehri, L. C., & Perin, D. (1997). Are word-reading processes the same or different in adult literacy students and third-fifth graders matched for reading? Journal of Educational Psychology, 89(2), 262–275.CrossRefGoogle Scholar
  44. Greenberg, D., Ehri, L. C., & Perin, D. (2002). Do adult literacy students make the same word-reading and spelling errors as children matched for word-reading age? Scientific Studies of Reading, 6(3), 221–243.CrossRefGoogle Scholar
  45. Guo, G., & Harris, K. M. (2000). The mechanisms mediating the effects of poverty on children’s intellectual development. Demography, 37(4), 431–447.CrossRefGoogle Scholar
  46. Hackman, D. A., & Farah, M. J. (2008). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 65–73.CrossRefGoogle Scholar
  47. Hanulíková, A., Dediu, D., Fang, Z., Bašnaková, J., & Huettig, F. (2012). Individual differences in the acquisition of a complex L2 phonology: A training study. Language Learning, 62(s2), 79–109.CrossRefGoogle Scholar
  48. Heckman, J. J. (2006). Skill formation and the economics of investing in disadvantaged children. Science, 312(5782), 1900–1902.CrossRefGoogle Scholar
  49. Heckman, J. J. (2007). The economics, technology and neuroscience of human capability formation. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 104(33), 13250–13255.CrossRefGoogle Scholar
  50. Ho, C., Lin, J., Wu, A. D., Udompholkul, P., & Knowlton, B. J. (2010). Contextual interference effects in sequence learning for young and older adults. American Psychological Association, 25(4), 929–939.Google Scholar
  51. Howard-Jones, P. A., Washbrook, E. V., & Meadows, S. (2012). Neuroscience and the timing of educational investment. Developmental Cognitive Neuroscience, 2(s1), S18–S29.CrossRefGoogle Scholar
  52. Hubel, D. H., & Weisel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology, 206(2), 419–436.Google Scholar
  53. Huttenlocher, P. R. (2002). Neural plasticity: The effects of the environment on the development of the cerebral cortex. Cambridge, MA: Harvard University Press.Google Scholar
  54. James, K.-H. (2010). Sensori-motor experience leads to changes in visual processing in the developing brain. Developmental Science, 13(2), 279–288.CrossRefGoogle Scholar
  55. Jones, A. E., Ten Cate, C., & Slater, P. J. B. (1996). Early experience and plasticity of song in adult male zebra finches (Taeniopygia guttata). Journal of Comparative Psychology, 110, 354–369.CrossRefGoogle Scholar
  56. Kannangara, T. S., Lucero, M. J., Gil-Mohapel, J., Drapala, R. J., Simpson, J. M., Christie, B. R., et al. (2010). Running reduces stress and enhances cell genesis in aged mice. Neurobiology of Aging, 32(12), 2279–2286.CrossRefGoogle Scholar
  57. Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., & Winstein, C. J. (2010). Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 13(8), 923–925.CrossRefGoogle Scholar
  58. Katzir, T., Kim, Y., Wolf, M., O’Brien, B., Kennedy, B., Lovett, M., et al. (2006). Reading fluency: The whole is more than the parts. Annals of Dyslexia, 56(1), 51–82.CrossRefGoogle Scholar
  59. Kempermann, G., Fabel, K., Ehninger, D., Babu, H., Leal-Galicia, P., Garthe, A. & Wolf, S. A. (2010). Why and how physical activity promotes experience-induced brain plasticity. Frontiers in Neuroscience, 4, Article 189.Google Scholar
  60. Kempermann, G., Gast, D., & Gage, F. H. (2002). Neuroplasticity in old age: Sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Annals of Neurology, 52(2), 135–143.CrossRefGoogle Scholar
  61. Keuroghlian, A. S., & Knudsen, E. I. (2007). Adaptive auditory plasticity in developing and adult animals. Progress in Neurobiology, 82(3), 109–121.CrossRefGoogle Scholar
  62. Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425.CrossRefGoogle Scholar
  63. Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e). Proceedings of the Royal Society of London Series B—Biological Sciences, 363(1493), 979–1000.Google Scholar
  64. Kuhl, P. K., Tsao, F.-M., & Liu, H.-M. (2003). Foreign-language experience in infancy: effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 100(15), 9096–9101.CrossRefGoogle Scholar
  65. Lee, T. D., & Simon, D. (2004). Contextual interference. In A. M. Williams & N. Hodges (Eds.), Skill acquisition in sport: Research, theory and practice (pp. 29–44). London, UK: Routledge.Google Scholar
  66. Mahncke, H. W., Bronstone, A., & Merzenich, M. M. (2006). Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Progress in Brain Research, 157, 81–109.CrossRefGoogle Scholar
  67. Mareschal, D., Tolmie, A., & Butterworth, B. (2013). Educational neuroscience. Oxford: Wiley-Blackwell.Google Scholar
  68. Martijn Jansma, J., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic processing. Journal of Cognitive Neuroscience, 13(6), 730–743.CrossRefGoogle Scholar
  69. McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293–299.CrossRefGoogle Scholar
  70. McCandliss, B. D., Fiez, J. A., Protopapas, A., Conway, M., & McClelland, J. L. (2002). Success and failure in teaching the [r]-[l] contrast to Japanese adults: Tests of a Hebbian model of plasticity and stabilization in spoken language perception. Cognitive, Affective and Behavioural Neuroscience, 2(2), 89–108.CrossRefGoogle Scholar
  71. Mohsena, M., Mascie-Taylor, C. G. N., & Goto, R. (2010). Association between socio-economic status and childhood under-nutrition in Bangladesh: A comparison of possession score and poverty index. Public Health Nutrition, 13(10), 1498–1504.CrossRefGoogle Scholar
  72. Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326.CrossRefGoogle Scholar
  73. Morin, A., Doyon, J., Dostie, V., Barakat, M., Hadj Tahar, A., Kormam, M., et al. (2008). Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep, 31(8), 1149–1156.Google Scholar
  74. NCES (National Center for Education Statistics) (2004). International outcomes of learning in mathematics literacy and problem solving. PISA 2003 Results from the U.S. perspective. Washington, DC: NCES, Institute of Education Sciences.Google Scholar
  75. NCES (National Center for Education Statistics) (2006). The health literacy of America’s adults. Results from the 2003 National Assessment of Adult Literacy(NAAL). Washington, DC: NCES, Institute of Education Sciences.Google Scholar
  76. Neville, H. J., Mills, D. L., & Lawson, D. S. (1992). Fractionating language: Different neural subsystems with different sensitive periods. Cerebral Cortex, 2(3), 244–258.CrossRefGoogle Scholar
  77. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., et al. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223.CrossRefGoogle Scholar
  78. Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.CrossRefGoogle Scholar
  79. Pena, J. L., & DeBello, W. M. (2010). Auditory processing, plasticity, and learning in the barn owl. ILAR Journal, 51(4), 338–352.CrossRefGoogle Scholar
  80. Rayner, K. (1998). Eye movements and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422.CrossRefGoogle Scholar
  81. Russo, F. A., Windell, D. L., & Cuddy, L. L. (2003). Learning the “special note”: Evidence for a critical period for absolute pitch acquisition. Music Perception, 21, 119–127.CrossRefGoogle Scholar
  82. Sabatini, J. P. (2002). Efficiency in word reading of adults: Ability group comparisons. Scientific Studies of Reading, 6(3), 267–298.CrossRefGoogle Scholar
  83. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1–66.CrossRefGoogle Scholar
  84. Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training induces changes in white matter architecture. Nature Neuroscience, 12(11), 1370–1371.CrossRefGoogle Scholar
  85. Sebastián, C., & Moretti, R. (2012). Profiles of cognitive precursors to reading acquisition. Contributions to a developmental perspective of adult literacy. Learning and Individual Differences, 22(5), 585–596.CrossRefGoogle Scholar
  86. Shea, C. H., & Kohl, R. M. (1991). Composition of practice: Influence on the retention of motor skills. Research Quarterly for Exercise and Sport, 62, 187–195.CrossRefGoogle Scholar
  87. Shield, B., & Dockrell, J. E. (2008). The effects of environmental and classroom noise on the academic attainments of primary school children. Journal of the Acoustical Society of America (JASA), 123(1), 133–144.CrossRefGoogle Scholar
  88. Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L., et al. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23(11), 987–992.CrossRefGoogle Scholar
  89. Stefan, K., Wycislo, M., & Classen, J. (2004). Modulation of associative human motor cortical plasticity by attention. Journal of Neurophysiology, 92(1), 66–72.CrossRefGoogle Scholar
  90. Stevens, C., Lauinger, B., & Neville, H. (2009). Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds: an event-related brain potential study. Developmental Science, 12(4), 634–646.CrossRefGoogle Scholar
  91. Tanner, E. M., & Finn-Stevenson, M. (2002). Nutrition and brain development: Social policy implications. American Journal of Orthopsychiatry, 72(2), 182–193.CrossRefGoogle Scholar
  92. Thomas, M. S. C. (2012). Brain plasticity and education. British Journal of Educational Psychology—Monograph Series II: Educational Neuroscience, 8, 142–156.Google Scholar
  93. Thomas, M. S. C., Forrester, N. A., & Ronald, A. (2013). Modeling socio-economic status effects on language development. Developmental Psychology, 49(12), 2325–2343.CrossRefGoogle Scholar
  94. Thomas, M. S. C., & Johnson, M. H. (2008). New advances in understanding sensitive periods in brain development. Current Directions in Psychological Science, 17(1), 1–5.CrossRefGoogle Scholar
  95. Thomas, M. S. C., & Knowland, V. (2009). Sensitive periods in brain development: Implications for education policy. European Psychiatric Review, 2(1), 17–20.Google Scholar
  96. Tomassini, V., Jbabdi, S., Kincses, Z. T., Bosnell, R., Douaud, G., Pozzilli, C., et al. (2011). Structural and functional bases for individual differences in motor learning. Human Brain Mapping, 32(3), 494–508.CrossRefGoogle Scholar
  97. Torgesen, J. K., Rashotte, C. A., & Alexander, A. W. (2001). Principles of fluency instruction in reading: Relationships with established empirical outcomes. In M. Wolf (Ed.), Dyslexia, fluency and the brain. Timonium, MD: York Press.Google Scholar
  98. Tricomi, E., Delgado, M. R., McCandliss, B. D., McClelland, J. L., & Feiz, J. A. (2006). Performance feedback drives caudate activation in a phonological learning task. Journal of Cognitive Neuroscience, 18(6), 1029–1043.CrossRefGoogle Scholar
  99. UNESCO (United Nations Educational, Scientific and Cultural Organisation). (2004). The plurality of literacy and its implications for policies and programmes. Paris: UNESCO Education Sector.Google Scholar
  100. Unsworth, N., & Engle, R. W. (2005). Individual differences in working memory capacity and learning: Evidence from the serial reaction time task. Memory and Cognition, 33(2), 213–220.CrossRefGoogle Scholar
  101. Valenzuela, M., & Sachdev, P. (2009). Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. American Journal of Geriatric Psychiatry, 17(3), 179–187.CrossRefGoogle Scholar
  102. Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R. (2002). Practice with sleep makes perfect: Sleep-dependent motor skill learning. Neuron, 35, 205–211.CrossRefGoogle Scholar
  103. Wang, L. C. (2011). Shrinking classroom age variance raises student achievement: Evidence from developing countries. Washington, DC: World Bank, Development Research Group, Human Development and Public Services Team.CrossRefGoogle Scholar
  104. Wishart, L. R., Lee, T. D., Cunningham, S. J., & Murdoch, J. E. (2002). Age-related differences and the role of augmented visual feedback in learning a bimanual coordination pattern. Acta Psychologia, 110(2–3), 247–263.CrossRefGoogle Scholar
  105. Zelazo, P. D. (2004). The development of conscious control in childhood. Trends in Cognitive Sciences, 8(1), 12–17.CrossRefGoogle Scholar
  106. Zhou, X., Panizzutti, R., de Villers-Sidani, E., Madeira, C., & Merzenich, M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. The Journal of Neuroscience, 31(15), 5625–5634.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht and UNESCO Institute for Lifelong Learning 2014

Authors and Affiliations

  • Victoria C. P. Knowland
    • 1
  • Michael S. C. Thomas
    • 2
  1. 1.City University LondonLondonUK
  2. 2.Centre for Educational Neuroscience and Birkbeck CollegeUniversity of LondonLondonUK

Personalised recommendations