Advertisement

International Review of Education

, Volume 56, Issue 1, pp 63–101 | Cite as

Variations in Reading Achievement Across 14 Southern African School Systems: Which Factors Matter?

  • Njora HungiEmail author
  • Florence W. Thuku
Article

Abstract

In this study the authors employed a multilevel analysis procedure in order to examine the pupil and school levels factors that contributed to variation in reading achievement among Grade 6 primary school pupils in 14 southern African school systems (Botswana, Kenya, Lesotho, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Uganda, Zambia, and Zanzibar). The data for this study were collected in 2002 as part of a major project known as the Southern and Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) that sought to examine the quality of education offered in primary schools in these countries. The most important factors affecting variation in pupil achievement across most of these school systems were grade repetition, pupil socioeconomic background, speaking the language of instruction at home, and Pupil age. South Africa, Uganda and Namibia were among the school systems with the largest between-school variation while Seychelles and Mauritius had the largest within-school variation. Low social equity in reading achievement was evident in Mauritius, Seychelles and Tanzania. Policy implications of the findings are discussed.

Keywords

School System Reading Achievement School Resource Grade Repetition Pupil Achievement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les différences en capacité de lecture dans 14 systèmes scolaires d’Afrique australe : quels sont les facteurs déterminants ? – Les auteurs ont appliqué dans cette étude une méthode d’analyse multi-niveaux, pour examiner dans les scores des élèves et des établissements les facteurs qui contribuent aux différences en capacité de lecture, parmi les élèves de sixièmes classes primaires de 14 systèmes scolaires d’Afrique australe (Afrique du Sud, Botswana, Kenya, Lesotho, Malawi, Maurice, Mozambique, Namibie, Ouganda, Seychelles, Swaziland, Tanzanie, Zambie et Zanzibar). Les données de cette étude ont été collectées en 2002 dans le cadre d’un vaste projet connu sous le nom de Consortium de l’Afrique australe et orientale pour le pilotage de la qualité de l’éducation (Southern and Eastern Africa Consortium for Monitoring Educational Quality, SACMEQ), qui visait à évaluer la qualité de l’enseignement dans les écoles primaires de ces pays. Les facteurs dominants influant sur les différences de résultats des élèves dans la majorité de ces systèmes scolaires sont : le redoublement de classe, le milieu socioéconomique de l’élève, l’usage de la langue d’enseignement dans le milieu familial et l’âge de l’élève. L’Afrique du Sud, l’Ouganda et la Namibie font partie des pays présentant les plus importants écarts entre les établissements, les Seychelles et Maurice font état des plus grandes différences à l’intérieur des établissements. Une inégalité sociale marquée se répercutant sur les capacités de lecture est manifeste à Maurice, aux Seychelles et en Tanzanie. Les auteurs présentent les implications en termes de politiques des conclusions de cette étude.

Zusammenfassung

Unterschiedliche Lesekompetenz in 14 Schulsystemen im südlichen Afrika: Welche Faktoren spielen eine Rolle? – Die Autor(inn)en dieser Studie haben mithilfe eines vielschichtigen Analyseverfahrens die Faktoren auf Schüler- und Schulniveau-Ebene untersucht, die in 14 Schulsystemen im südlichen Afrika (Botsuana, Kenia, Lesotho, Malawi, Mauritius, Mosambik, Namibia, Seychellen, Südafrika, Swasiland, Tansania, Uganda, Sambia und Sansibar) zu Schwankungen bei der Lesekompetenz von Grundschülerinnen und -schülern der 6. Jahrgangsstufe beigetragen haben. Die Daten für diese Untersuchung wurden 2002 im Rahmen eines großen Projekts namens SACMEQ (Southern and Eastern Africa Consortium for Monitoring Educational Quality  = Süd- und ostafrikanisches Konsortium für das Monitoring der Bildungsqualität) erhoben, mit dem die Bildungsqualität von Grundschulen in diesen Ländern untersucht werden sollte. In den meisten dieser Schulsysteme waren die wichtigsten Faktoren für die schwankenden Schulleistungen die Wiederholung von Jahrgangsstufen, der sozioökonomische Hintergrund der Schülerinnen und Schüler, die Verwendung der Unterrichtssprache zu Hause und das Alter der Schülerinnen und Schüler. Südafrika, Uganda und Namibia gehörten zu den Ländern, deren Schulsysteme die größten Schwankungen zwischen verschiedenen Schulen aufwiesen, während die Ergebnisse innerhalb einer Schule in den Inselstaaten Seychellen und Mauritius am weitesten auseinanderklafften. Große sozial bedingte Unterschiede bei den Lesefertigkeiten traten in Mauritius, den Seychellen und in Tansania zutage. Es werden die politischen Implikationen der Ergebnisse diskutiert.

Resumen

Diferencias en la capacidad de lectura entre 14 sistemas escolares de África meridional: ¿cuáles son los factores relevantes? – En este estudio, los autores emplearon un prodecimiento de análisis multinivel para estudiar los factores que –en cuanto a niveles de alumnos y de escuelas – han contribuido a las diferencias en cuanto a capacidad de lectura de los alumnos de sexto grado de enseñanza primaria en 14 sistemas escolares sudafricanos (Botswana, Kenya, Lesotho, Malawi, Mauricio, Mozambique, Namibia, Seychelles, Sudáfrica, Swazilandia, Tanzanía, Uganda, Zambia y Zanzibar). Este estudio se basa sobre datos recabados en 2002 como parte de un importante proyecto conocido como el Consorcio del Africa Meridional para el Monitoreo de la Calidad de la Educación (SACMEQ, por sus siglas en inglés), cuya finalidad era examinar la calidad de la educación en las escuelas primarias de estos países. Los principales factores que afectan las diferencias en capacidad de lectura dentro de estos sistemas de educación han sido la repetición del año escolar, el trasfondo socioeconómico del alumno, que la lengua hablada en el hogar del alumno sea o no la lengua de enseñanza, y la edad del alumno. Sudáfrica, Uganda y Namibia se encuentran entre los sistemas escolares con las mayores diferencias entre las diferentes escuelas, mientras que las Seychelles y Mauritius mostraban las mayores variaciones dentro de las mismas escuelas. Una baja justicia social, en cuanto al aprendizaje de la lectura, se ha evidenciado en Mauritius, Seychelles y Tanzania. Las implicaciones políticas de estas comprobaciones se están sometiendo a debate. Open image in new window Open image in new window

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrich, D., et al. (2003) RUMM (Rasch Unidimensional Measurement Models) 2020 version 4.0. Perth: RUMM Laboratory Pty Ltd.Google Scholar
  2. Baker, D. P., et al. (2002) Socioeconomic status, school quality, and national economic development: A cross-national analysis of the “Heyneman-Loxley effect” on mathematics and science achievement. Comparative Education Review, 46(3), 291-312.CrossRefGoogle Scholar
  3. Brophy, J. (2006) Grade repetition. Education policy series 6. International Academy of Education & International Institute for Educational Planning.Google Scholar
  4. Bryk, A. S., and Raudenbush, S. W. (1992) Hierarchical linear models: Applications and data analysis methods. Newbury Park: Sage Publications.Google Scholar
  5. Coleman, J. S., et al. (1966) Equality of Educational Opportunity. National Center for Educational Statistics: Washington, DC.Google Scholar
  6. Comber, L. C., and Keeves, J. P. (1973) Science education in nineteen countries: An empirical study. Stockholm: Amquist and Wiksell.Google Scholar
  7. Ferrer, F., et al. (2006) Equity and segregation in the Spanish education system. Prospects, 36(4), 547-571.CrossRefGoogle Scholar
  8. Fuller, B. (1987) What school factors raise achievement in the developing world? Review of Educational Research, 57, 255–292.Google Scholar
  9. Fuller, B., and Clarke, P. (1994) Raising school effects while ignoring culture? Local conditions, and the influence of classroom tools, rules, and pedagogy. Review of Educational Research, 64(1), 119–157.Google Scholar
  10. Gamoran, A., and D. A. Long, 2006. Equality of Educational Opportunity: A 40-year retrospective (WCER Working Paper No. 2006-9). Madison: University of Wisconsin. http://www.wcer.wisc.edu/publications/workingPapers/papers.php, retrieved 12 April, 2009.
  11. Glewwe, P., et al. (2004) Retrospective vs. prospective analyses of school inputs: the case of flip charts in Kenya. Journal of Development Economics, 74, 251– 268.CrossRefGoogle Scholar
  12. Hanushek, E.A., and Luque, J.A. (2003) Efficiency and equity in schools around the world. Economics of Education Review, 22, 481–502.CrossRefGoogle Scholar
  13. Heyneman, S. P., and Loxley, W. A. (1982) Influences on academic achievement across high and low income countries: A re-analysis of IEA data. Sociology of Education, 55(1), 13-21.CrossRefGoogle Scholar
  14. Heyneman, S. P., and Loxley, W. A. (1983) The effect of primary-school quality on academic achievement across twenty-nine high- and low-income countries. American Journal of Sociology, 88(6), 1162-1194.CrossRefGoogle Scholar
  15. Hox, J. J. (1995) Applied multilevel analysis. Amsterdam: TT-Publikaties.Google Scholar
  16. Hungi, N. (2008) Examining differences in mathematics and reading achievement among Grade 5 pupils in Vietnam. Studies in Educational Evaluation, 34(3), 155-164.CrossRefGoogle Scholar
  17. Husén, T. (1967) International study of achievement in mathematics (Vol. 2). Stockholm: Almqvist and Wiksell.Google Scholar
  18. Jahangeer, S. A., and Jahangeer, A. C. (2004) School culture in a private secondary institution in Mauritius. International Education Journal, 5(2), 247-254.Google Scholar
  19. Keeves, J. P. (1975) The home, the school and achievement in mathematics and science. Science Education, 59 (4), 207–218.CrossRefGoogle Scholar
  20. Keeves, J. P. (1997) Suppressor Variables. In: J.P. Keeves (ed.), Educational Research, Methodology, and Measurement: an International Handbook (pp. 695-6). Oxford: Pergamon Press.Google Scholar
  21. Kulpoo, D. 1998. The Quality of Education: Some Policy Suggestions Based on a Survey of Schools. SACMEQ Policy Research No. 1, Mauritius. Paris: IIEP.Google Scholar
  22. Leste, A., et al. (2005) The SACMEQ II project in Seychelles: A study of the conditions of schooling and the quality of education. Harare: SACMEQ.Google Scholar
  23. Mukudi, E. (2003) Nutrition status, education participation, and school achievement among Kenyan middle school children. Nutrition, 19(7-8), 612-616.CrossRefGoogle Scholar
  24. Nannyonjo, H. (2007) Education inputs in Uganda: An analysis of factors influencing learning achievement in Grade Six. Washington, D.C.: The World BankGoogle Scholar
  25. Norisah bt Atan H., et al. (1982) Remedial reading support program for children in Grade 2 in Malaysia. In: Evaluation in Education, 6, 137-160.CrossRefGoogle Scholar
  26. Onsumu, E., et al. (2005) The SACMEQ II project in Kenya: A study of the conditions of schooling and the quality of education. Harare: SACMEQ.Google Scholar
  27. Postlethwaite, N. T., and Wiley, D. E. (1991) The IEA study of Science II. Science achievement in twenty-three countries. Oxford: Pergamon.Google Scholar
  28. Rasch, G. 1980. Probabilistic Models for Some Intelligence and Attainment Test. Chicago: University of Chicago Press. (Originally published by The Danish Institute for Educational Research, Copenhagen 1960).Google Scholar
  29. Raudenbush, S. W., and A. S. Bryk. 1994. Hierarchical linear models. In: International Encyclopedia of Education: Research and Studies, ed. by Husén Torsten and Postlethwaite T. Neville, 2nd ed., 2590–2596. Oxford: Pergamon.Google Scholar
  30. Raudenbush, S. W., and Bryk, A. S. (2002) Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage Publications.Google Scholar
  31. Raudenbush, S. W., et al. (2005) HLM 6. Lincolnwood, IL: Scientific Software International.Google Scholar
  32. Wu, M., et al. (1998) CONQUEST: Generalised item response modelling software. Melbourne: ACER.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.International Institute for Educational PlanningNakuruKenya
  2. 2.Ministry of EducationNairobiKenya

Personalised recommendations