Moving forward in the use of aerobic granular sludge for municipal wastewater treatment: an overview

  • Mario Sepúlveda-Mardones
  • José Luis Campos
  • Albert Magrí
  • Gladys VidalEmail author
Review paper


Activated sludge is one of the most widely implemented technologies for municipal wastewater treatment. Yet, more restrictive environmental standards demand for more efficient technologies. Aerobic granular sludge (AGS) is a promising alternative in this context since this technology has shown potential for simultaneous organic matter and nutrient removal using smaller bioreactors and consuming less energy. However, despite such engaging claims, only ca. 40 full-scale AGS systems have been installed worldwide after 30 years of development. This reduced implementation suggests the existence of significant bottlenecks for this technology, which currently only have partially been overcome. This overview aims to analyze the recent progress in R&D concerning aerobic sludge granulation for municipal wastewater treatment via the analysis of research articles and invention patents as well as to elucidate exiting technological gaps and development opportunities. Culturing methods aiming at fast granulation, long-term stability and excellent process performance are of utmost interest for promoting massive implementation of full-scale AGS systems. Moreover, the recovery of biomaterials from waste sludge could contribute to the implementation of the biorefinery paradigm in wastewater treatment plants.


Aerobic granular sludge Domestic sewage Full-scale Wastewater treatment plant 



Aerobic granular sludge




Alginate-like exopolysaccharides


Anaerobic ammonium oxidation


Ammonia-oxidizing bacteria


Activated sludge


Biological nutrient removal


Biochemical oxygen demand


Continuous flow reactor


Chemical oxygen demand


Dissolved air flotation


Extracellular polymeric substances


Glycogen accumulating organisms


Height-to-diameter ratio


Membrane bioreactor


Nitrite-oxidizing bacteria


Organic loading rate


Polyphosphate-accumulating organisms




Population equivalent








Quorum quenching


Quorum sensing


Research and development


Sequencing batch reactor


Simultaneous nitrification–denitrification


Solids retention time


Sludge volume index


SVI at 10 min


SVI at 30 min


SVI at 5 min


Total nitrogen


Total phosphorus


Total suspended solids


Upflow anaerobic sludge blanket


Volume exchange ratio


Volatile suspended solids


Wastewater treatment plant



This work was supported by CONICYT/FONDAP/15130015.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adav SS, Lee D-J, Show K-Y, Tay J-H (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26:411–423. CrossRefGoogle Scholar
  2. Alleman JE, Prakasam TBS (1983) Reflections on seven decades of activated sludge history. J Water Pollut Control Fed 55:436–443Google Scholar
  3. Ardern E, Lockett WT (1914) Experiments on the oxidation of sewage without the aid of filters. J Soc Chem Ind 33:523–539. CrossRefGoogle Scholar
  4. Awang NA, Shaaban MG (2016) Effect of reactor height/diameter ratio and organic loading rate formation of aerobic granular sludge in sewage treatment. Int Biodeterior Biodegrad 112:1–11. CrossRefGoogle Scholar
  5. Bengtsson S, de Blois M, Wilén B-M, Gustavsson D (2018) Treatment of municipal wastewater with aerobic granular sludge. Crit Rev Environ Sci Technol 48:119–166. CrossRefGoogle Scholar
  6. Bengtsson S, de Blois M, Wilén B-M, Gustavsson D (2019) A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environ Technol 40:2769–2778. CrossRefGoogle Scholar
  7. Bernat K, Cydzik-Kwiatkowska A, Wojnowska-Baryła I, Karczewska M (2017) Physicochemical properties and biogas productivity of aerobic granular sludge and activated sludge. Biochem Eng J 117:43–51. CrossRefGoogle Scholar
  8. Beun JJ, Hendriks A, van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33:2283–2290. CrossRefGoogle Scholar
  9. Beun JJ, van Loosdrecht MCM, Heijnen JJ (2000) Aerobic granulation. Water Sci Technol 41(4–5):41–48. CrossRefGoogle Scholar
  10. Beun JJ, van Loosdrecht MCM, Heijnen JJ (2002) Aerobic granulation in a sequencing batch airlift reactor. Water Res 36:702–712. CrossRefGoogle Scholar
  11. Campos JL, Garrido-Fernández JM, Méndez R, Lema JM (1999) Nitrification at high ammonia loading rates in an activated sludge unit. Bioresour Technol 68:141–148. CrossRefGoogle Scholar
  12. Campos JL, Figueroa M, Mosquera-Corral A, Méndez R (2009) Aerobic sludge granulation: state-of-the-art. Int J Environ Eng 1:136–151. CrossRefGoogle Scholar
  13. Cassidy DP, Belia E (2005) Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Res 39:4817–4823. CrossRefGoogle Scholar
  14. Chamorro S, Hernández V, Matamoros V, Domínguez C, Becerra J, Vidal G, Piña B, Bayona JM (2013) Chemical characterization of organic microcontaminant sources and biological effects in riverine sediments impacted by urban sewage and pulp mill discharges. Chemosphere 90:611–619. CrossRefGoogle Scholar
  15. Chen C, Ming J, Yoza BA, Liang J, Li QX, Guo H, Liu Z, Deng J, Wang Q (2019) Characterization of aerobic granular sludge used for the treatment of petroleum wastewater. Bioresour Technol 271:353–359. CrossRefGoogle Scholar
  16. Chudoba J, Grau P, Ottová V (1973) Control of activated-sludge filamentous bulking—II. Selection of microorganisms by means of a selector. Water Res 7:1389–1406. CrossRefGoogle Scholar
  17. Coma M, Verawaty M, Pijuan M, Yuan Z, Bond PL (2012) Enhancing aerobic granulation for biological nutrient removal from domestic wastewater. Bioresour Technol 103:101–108. CrossRefGoogle Scholar
  18. de Graaff DR, van Dijk EJH, van Loosdrecht MCM, Pronk M (2019) Strength characterization of full-scale aerobic granular sludge. Environ Technol. CrossRefGoogle Scholar
  19. de Kreuk MK, van Loosdrecht MC (2006) Formation of aerobic granules with domestic sewage. J Environ Eng ASCE 136:694–697. CrossRefGoogle Scholar
  20. de Kreuk MK, Heijnen JJ, van Loosdrecht MCM (2005a) Simultaneous COD, nitrogen and phosphate removal by aerobic granular sludge. Biotechnol Bioeng 90:761–769. CrossRefGoogle Scholar
  21. de Kreuk MK, Pronk M, van Loosdrecht MCM (2005b) Formation of aerobic granules and conversion processes in an aerobic granular sludge bioreactor at moderate and low temperatures. Water Res 39:4476–4484. CrossRefGoogle Scholar
  22. de Kreuk MK, Kishida N, van Loosdrecht MCM (2007) Aerobic granular sludge—state of the art. Water Sci Technol 55(8–9):75–81. CrossRefGoogle Scholar
  23. de Sousa Rollemberg SL, Mendes Barros AR, Milen Firmino PI, Bezerra dos Santos A (2018) Aerobic granular sludge: cultivation parameters and removal mechanisms. Bioresour Technol 270:678–688. CrossRefGoogle Scholar
  24. Derlon N, Wagner J, Ribeiro da Costa RH, Morgenroth E (2016) Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume. Water Res 105:341–350. CrossRefGoogle Scholar
  25. Devlin TR, Oleszkiewicz JA (2018) Cultivation of aerobic granular sludge in continuous flow under various selective pressure. Bioresour Technol 253:281–287. CrossRefGoogle Scholar
  26. Dohányos M, Zábranská J, Kutil J, Jeníček P (2004) Improvement of anaerobic digestion of sludge. Water Sci Technol 49(10):89–96. CrossRefGoogle Scholar
  27. Dominguez D, Gujer W (2006) Evolution of a wastewater treatment plant challenges traditional design concepts. Water Res 40:1389–1396. CrossRefGoogle Scholar
  28. Fang F, Liu X-W, Xu J, Yu H-Q, Li Y-M (2009) Formation of aerobic granules and their PHB production at various substrate and ammonium concentrations. Bioresour Technol 100:59–63. CrossRefGoogle Scholar
  29. Felz S, Al-Zuhairy S, Aarstad OA, van Loosdrecht MCM, Lin YM (2016) Extraction of structural extracellular polymeric substances from aerobic granular sludge. J Vis Exp 115:54534. CrossRefGoogle Scholar
  30. Fernández-Álvarez G, Pérez J, Gómez MA (2014) Optimization of reactor depth in membrane bioreactors for municipal wastewater treatment. J Environ Eng ASCE 140(7):04014019. CrossRefGoogle Scholar
  31. Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947CrossRefGoogle Scholar
  32. Franca RDG, Pinheiro HM, van Loosdrecht MCM, Lourenço ND (2017) Stability of aerobic granules during long-term bioreactor operation. Biotechnol Adv 36:228–246. CrossRefGoogle Scholar
  33. Frankin RJ (2001) Full-scale experiences with anaerobic treatment of industrial wastewater. Water Sci Technol 44(8):1–6. CrossRefGoogle Scholar
  34. Fuller GW (1915) Recent developments in sewage disposal. Public Health J 6:103–106Google Scholar
  35. Giesen A, de Bruin LMM, Niermans RP, van der Roest HF (2013) Advancements in the application of aerobic granular biomass technology for sustainable treatment of wastewater. Water Pract Technol 8:47–54. CrossRefGoogle Scholar
  36. Gobi K, Vadivelu VM (2014) Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalcanoate in aerobic granules. Bioresour Technol 161:441–445. CrossRefGoogle Scholar
  37. Gobi K, Vadivelu VM (2015) Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules. Bioresour Technol 189:169–176. CrossRefGoogle Scholar
  38. Guo J, Peng Y, Wang Z, Yuan Z, Yang X, Wang S (2012) Control filamentous bulking caused by chlorine-resistant Type 021N bacteria through adding a biocide CTAB. Water Res 46:6531–6542. CrossRefGoogle Scholar
  39. Hao W, Li Y, Lv J, Chen L, Zhu J (2016) The biological effect of metal ions on the granulation of aerobic granular activated sludge. J Environ Sci 44:252–259. CrossRefGoogle Scholar
  40. He Q, Chen L, Zhang S, Chen R, Wang H (2019) Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment. Bioresour Technol 271:48–58. CrossRefGoogle Scholar
  41. Heijnen JJ, van Loosdrecht MCM, Mulder A, Tijhuis L (1992) Formation of biofilms in a biofilm air-lift suspension reactor. Water Sci Technol 26:647–654. CrossRefGoogle Scholar
  42. Henriet O, Meunier C, Henry P, Mahillon J (2016) Improving phosphorus removal in aerobic granular sludge processes through selective microbial management. Bioresour Technol 211:298–306. CrossRefGoogle Scholar
  43. Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J (2016) Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere 157:137–151. CrossRefGoogle Scholar
  44. Isanta E, Suárez-Ojeda ME, Val del Río A, Morales N, Pérez J, Carrera J (2012) Long term operation of a granular sequencing batch reactor at pilot scale treating a low-strength wastewater. Chem Eng J 198–199:163–170. CrossRefGoogle Scholar
  45. Jahn L, Svardal K, Krampe J (2019) Comparison of aerobic granulation in SBR and continuous-flow plants. J Environ Manage 231:953–961. CrossRefGoogle Scholar
  46. Jungles MK, Campos JL, Costa RHR (2014) Sequencing batch reactor operation for treating wastewater with aerobic granular sludge. Braz J Chem Eng 31:27–33. CrossRefGoogle Scholar
  47. Kent TR, Bott CB, Wang Z-W (2018) State of the art of aerobic granulation in continuous flow bioreactors. Biotechnol Adv 36:1139–1166. CrossRefGoogle Scholar
  48. Khan AA, Ahmad M, Giesen A (2015) NEREDA®: an emerging technology for sewage treatment. Water Pract Technol 10:799–805. CrossRefGoogle Scholar
  49. Kim YM, Cho HU, Lee DS, Park D, Park JM (2011) Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process. Water Res 45:5785–5795. CrossRefGoogle Scholar
  50. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303. CrossRefGoogle Scholar
  51. Lemaire R, Yuan Z, Blackall LL, Crocetti GR (2008) Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system. Environ Microbiol 10:354–363. CrossRefGoogle Scholar
  52. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28. CrossRefGoogle Scholar
  53. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734. CrossRefGoogle Scholar
  54. Li A, Li X, Yu H (2011) Effect of food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules. Process Biochem 46:2269–2276. CrossRefGoogle Scholar
  55. Li J, Ding L-B, Cai A, Huang G-X, Horn H (2014) Aerobic sludge granulation in a full-scale sequencing batch reactor. Biomed Res Int. CrossRefGoogle Scholar
  56. Li K, Wei D, Zhang G, Shi L, Wang Y, Wang B, Wang X, Du B, Wei Q (2015) Toxicity of bisphenol A to aerobic granular sludge in sequencing batch reactors. J Mol Liq 209:284–288. CrossRefGoogle Scholar
  57. Li X, Luo J, Guo G, Mackey HR, Hao T, Chen G (2017) Seawater-based wastewater accelerates development of aerobic granular sludge: a laboratory proof-of-concept. Water Res 115:210–219. CrossRefGoogle Scholar
  58. Lin YM, Sharma PK, van Loosdrecht MCM (2013) The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge. Water Res 47:57–65. CrossRefGoogle Scholar
  59. Lin YM, Nierop KGJ, Girbal-Neuhauser E, Adriaanse M, van Loosdrecht MCM (2015) Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material. Sustain Mat Technol 4:24–29. CrossRefGoogle Scholar
  60. Liu Y, Tay J-H (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665. CrossRefGoogle Scholar
  61. Liu Y, Tay J-H (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22:533–563. CrossRefGoogle Scholar
  62. Liu Y-Q, Tay J-H (2007a) Characteristics and stability of aerobic granules cultivated with different starvation time. Appl Microbiol Biotechnol 75:205–210. CrossRefGoogle Scholar
  63. Liu Y-Q, Tay J-H (2007b) Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors. Enzyme Microb Technol 41:516–522. CrossRefGoogle Scholar
  64. Liu Y-Q, Tay J-H (2015) Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Water Res 80:256–266. CrossRefGoogle Scholar
  65. Liu Y, Xiu H-L, Show K-Y, Tay J-H (2002) Anaerobic granulation technology for wastewater treatment. World J Microbiol Biotechnol 18:99–113. CrossRefGoogle Scholar
  66. Liu Y-Q, Tay J-H, Moy BY-P (2006) Characteristics of aerobic granular sludge in sequencing batch reactor with variable aeration. Appl Microbiol Biotechnol 71:761–766. CrossRefGoogle Scholar
  67. Liu X-W, Sheng G-P, Yu H-Q (2009) Physicochemical characteristics of microbial granules. Biotechnol Adv 27:1061–1070. CrossRefGoogle Scholar
  68. Liu J, Li J, Xie K, Sellamuthu B (2019) Role of adding dried sludge micropowder in aerobic granular sludge reactor with extended filamentous bacteria. Bioersour Technol Rep 5:51–58. CrossRefGoogle Scholar
  69. Lochmatter S, Gonzalez-Gil G, Holliger C (2013) Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge. Water Res 15:6178–6197. CrossRefGoogle Scholar
  70. Long B, Yang C, Pu W, Yang J, Liu F, Zhang L, Cheng K (2015) Rapid cultivation of aerobic granular sludge in a continuous flow reactor. J Environ Chem Eng 3:2966–2973. CrossRefGoogle Scholar
  71. Lv Y, Wan C, Lee D-J, Liu X, Tay J-H (2014a) Microbial communities of aerobic granules: granulation mechanisms. Bioresour Technol 169:344–351. CrossRefGoogle Scholar
  72. Lv J, Wang Y, Zhong C, Li Y, Hao W, Zhu J (2014b) The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge. Bioresour Technol 152:53–58. CrossRefGoogle Scholar
  73. Maktabifard M, Zaborowska E, Makinia J (2018) Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Rev Environ Sci Bio-Technol 17:655–689. CrossRefGoogle Scholar
  74. McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaherty V (2003) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Bio-Technol 2–4:225–245. CrossRefGoogle Scholar
  75. Meng F, Liu D, Pan Y, Xi L, Yang D, Huang W (2019) Enhanced amount and quality of alginate-like exopolysaccharides in aerobic granular sludge for the treatment of salty wastewater. BioResources 14:139–165. CrossRefGoogle Scholar
  76. Mesdaghinia A, Ghahremani MH, Nabizadeh R, Nasseri S, Rafiee M (2017) Role of CODPCP/CODTotal ratio on p-chlorophenol toxicity towards aerobic granular sludge. J Ind Eng Chem 54:440–446. CrossRefGoogle Scholar
  77. Mishima K, Nakamura M (1991) Self-immobilization of aerobic activated sludge—a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Sci Technol 23(4–6):981–990. CrossRefGoogle Scholar
  78. Mohan SV, Nikhil GN, Chiranjeevi P, Reddy CN, Rohit MV, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12. CrossRefGoogle Scholar
  79. Morales N, Figueroa M, Fra-Vázquez A, Val del Río A, Campos JL, Mosquera-Corral A, Méndez R (2013) Operation of an aerobic granular pilot scale SBR plant to treat swine slurry. Process Biochem 48:1216–1221. CrossRefGoogle Scholar
  80. Morgenroth E, Sherden T, van Loosdrecht MCM, Heijnen JJ, Wilderer PA (1997) Aerobic granular sludge in a sequencing batch reactor. Water Res 31:3191–3194. CrossRefGoogle Scholar
  81. Mosquera-Corral A, de Kreuk MK, Heijnen JJ, van Loosdrecht MCM (2005) Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Res 39:2676–2686. CrossRefGoogle Scholar
  82. Moy BY-P, Tay J-H, Toh S-K, Liu Y, Tay ST-L (2002) High organic loading influences the physical characteristics of aerobic sludge granules. Lett Appl Microbiol 34:407–412. CrossRefGoogle Scholar
  83. Neumann P, Pesante S, Venegas M, Vidal G (2016) Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Bio-Technol 15:173–211. CrossRefGoogle Scholar
  84. Ni B-J, Xie W-M, Liu S-G, Yu H-Q, Wang Y-Z, Wang G, Dai X-L (2009) Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res 43:751–761. CrossRefGoogle Scholar
  85. Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, Reis MAM (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300. CrossRefGoogle Scholar
  86. Oehmen A, Carvalho G, Lopez-Vazquez CM, van Loosdrecht MCM, Reis MAM (2010) Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Res 44:4992–5004. CrossRefGoogle Scholar
  87. Orhon D (2015) Evolution of the activated sludge process: the first 50 years. J Chem Technol Biotechnol 90:608–640. CrossRefGoogle Scholar
  88. Palmeiro-Sánchez T, Val del Río A, Mosquera-Corral A, Campos JL, Méndez R (2013) Comparison of the anaerobic digestion of activated and aerobic granular sludges under brackish conditions. Chem Eng J 231:449–454. CrossRefGoogle Scholar
  89. Pijuan M, Werner U, Yuan Z (2011) Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules. Water Res 45:5075–5083. CrossRefGoogle Scholar
  90. Pronk M, de Kreuk MK, de Bruin B, Kamminga P, Kleerebezem R, van Loosdrecht MCM (2015) Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res 84:207–217. CrossRefGoogle Scholar
  91. Pronk M, Giesen A, Thomson A, Robertson S, van Loosdrecht M (2017) Aerobic granular biomass technology: advancements in design, applications and further developments. Water Pract Technol 12:987–996. CrossRefGoogle Scholar
  92. Qin L, Liu Y, Tay J-H (2004a) Effect of settling time on aerobic granulation in sequencing batch reactor. Biochem Eng J 21:47–52. CrossRefGoogle Scholar
  93. Qin L, Tay J-H, Liu Y (2004b) Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem 39:579–584. CrossRefGoogle Scholar
  94. Qin L, Liu Y, Tay J-H (2005) Denitrification on poly-β-hydroxybutyrate in microbial granular sludge sequencing batch reactor. Water Res 39:1503–1510. CrossRefGoogle Scholar
  95. Ramdani A, Dold P, Déléris S, Lamarre D, Gadbois A, Comeau Y (2010) Biodegradation of the endogenous residue of activated sludge. Water Res 44:2179–2188. CrossRefGoogle Scholar
  96. Raza ZA, Abid S, Barnat IM (2018) Polyhydroxyalcanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegrad 126:45–56. CrossRefGoogle Scholar
  97. Rockstäschel T, Klarmann C, Helmreich B, Ochoa J, Boisson P, Sørensen KH, Horn H (2013) Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed. Water Res 47:6423–6431. CrossRefGoogle Scholar
  98. Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B (2018) Challenges of scaling-up PHA production from waste streams. A review. J Environ Manag 205:215–230. CrossRefGoogle Scholar
  99. Sarma SJ, Tay JH, Chu A (2017) Finding knowledge gaps in aerobic granulation technology. Trends Biotechnol 35:66–78. CrossRefGoogle Scholar
  100. Schwarzenbeck N, Borges JM, Wilderer PA (2005) Treatment of dairy effluents in an anaerobic granular sludge batch reactor. Appl Microbiol Biotechnol 66:711–718. CrossRefGoogle Scholar
  101. Sengar A, Basheer F, Aziz A, Farooqi IH (2018) Aerobic granulation technology: laboratory studies to full scale practices. J Clean Prod 197:616–632. CrossRefGoogle Scholar
  102. Seviour T, Yuan Z, van Loosdrecht MCM, Lin Y (2012) Aerobic sludge granulation: a tale of two polysaccharides? Water Res 46:4803–4813. CrossRefGoogle Scholar
  103. Show K-Y, Lee D-J, Tay J-H (2012) Aerobic granulation: advances and challenges. Appl Biochem Biotechnol 167:1622–1640. CrossRefGoogle Scholar
  104. Sözen S, Çokgör EU, Orhon D, Henze M (1998) Respirometric analysis of activated sludge behaviour—II. Heterotrophic growth under aerobic and anoxic conditions. Water Res 32:476–488. CrossRefGoogle Scholar
  105. Su B, Cui X, Zhu J (2012) Optimal cultivation and characteristics of aerobic granules with typical domestic sewage in an alternating anaerobic/aerobic sequencing batch reactor. Bioresour Technol 110:125–129. CrossRefGoogle Scholar
  106. Świątczak P, Cydzik-Kwiatkowska A (2018) Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant. Environ Sci Pollut Res 25:1655–1669. CrossRefGoogle Scholar
  107. Tan G-YA, Chen C-L, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang J-Y (2014a) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754. CrossRefGoogle Scholar
  108. Tan CH, Koh KS, Xie C, Tay M, Zhou Y, Williams R, Ng WJ, Rice SA, Kjelleberg S (2014b) The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. ISME J 8:1186–1197. CrossRefGoogle Scholar
  109. Tan CH, Koh KS, Xie C, Zhang J, Tan XH, Lee GP, Zhou Y, Ng WJ, Rice SA, Kjelleberg S (2015) Community quorum sensing signalling and quenching: microbial granular biofilm assembly. NPJ Biofilms Microbiomes 1:15006. CrossRefGoogle Scholar
  110. Tay J-H, Liu Q-S, Liu Y (2001) The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl Microbiol Biotechnol 57:227–233. CrossRefGoogle Scholar
  111. Tay JH, Liu QS, Liu Y (2004) The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor. Water Sci Technol 49(11–12):35–40. CrossRefGoogle Scholar
  112. Tijhuis L, van Loosdrecht MCM, Heijnen JJ (1994) Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol Bioeng 44:595–608. CrossRefGoogle Scholar
  113. United Nations (2018) Revision of world urbanization prospects. UN Department of Economic and Social Affairs. Accessed 24 May 2019
  114. Val Del Río A, Palmeiro-Sanchez T, Figueroa M, Mosquera-Corral A, Campos JL, Méndez R (2013) Anaerobic digestion of aerobic granular biomass: effects of thermal pre-treatment and addition of primary sludge. J Chem Technol Biotechnol 89:690–697. CrossRefGoogle Scholar
  115. van Dijk EJH, Pronk M, van Loosdrecht MCM (2018) Controlling effluent suspended solids in the aerobic granular sludge process. Water Res 147:50–59. CrossRefGoogle Scholar
  116. van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ (1995) Biofilm structures. Water Sci Technol 32(8):35–43. CrossRefGoogle Scholar
  117. Van Loosdrecht MCM, Picioreanu C, Heijnen JJ (1997) A more unifying hypothesis for biofilm structures. FEMS Microbiol Ecol 24:181–183. CrossRefGoogle Scholar
  118. Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247:1015–1026. CrossRefGoogle Scholar
  119. Verawaty M, Pijuan M, Yuan Z, Bond PL (2012) Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Res 46:761–771. CrossRefGoogle Scholar
  120. Wagner J, Weissbrodt DG, Manguin V, Ribeiro da Costa RH, Morgenroth E, Derlon N (2015) Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors. Water Res 85:158–166. CrossRefGoogle Scholar
  121. Wang S-G, Liu X-W, Gong W-X, Gao B-Y, Zhang D-H, Yu H-Q (2007) Aerobic granulation with brewery wastewater in a sequencing batch bioreactor. Bioresour Technol 98:2142–2147. CrossRefGoogle Scholar
  122. Wang Y, Zhong C, Huang D, Wang Y, Zhu J (2013) The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux. Bioresour Technol 136:488–495. CrossRefGoogle Scholar
  123. Wang X, Chen Z, Kang J, Zhao X, Shen J, Yang L (2019a) The key role of inoculated sludge in fast start-up of sequencing batch reactor for the domestication of aerobic granular sludge. J Environ Sci 78:127–136. CrossRefGoogle Scholar
  124. Wang S, Ma X, Wang Y, Du G, Tay J-H, Li J (2019b) Piggery wastewater treatment by aerobic granular sludge: granulation process and antibiotics and antibiotic-resistant bacteria removal and transport. Bioresour Technol 273:350–357. CrossRefGoogle Scholar
  125. Wei D, Wang Y, Wang X, Li M, Han F, Ju L, Zhang G, Shi L, Li K, Wang B, Du B, Wei Q (2015) Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances. J Hazard Mater 289:101–107. CrossRefGoogle Scholar
  126. Weissbrodt DG, Neu TR, Kuhlicke U, Rappaz Y, Holliger C (2013) Assessment of bacterial structural dynamics in aerobic granular biofilms. Front Microbiol 4:175. CrossRefGoogle Scholar
  127. Wett B, Podmirseg SM, Gómez-Brandón M, Hell M, Nyhuis G, Bott C, Murthy S (2015) Expanding DEMON sidestream deammonification technology towards mainstream application. Water Environ Res 87:2084–2088. CrossRefGoogle Scholar
  128. Wilén B-M, Liébana R, Persson F, Modin O, Hermansson M (2018) The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Appl Microbiol Biotechnol 102:5005–5020. CrossRefGoogle Scholar
  129. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134. CrossRefGoogle Scholar
  130. Winkler M-KH, Meunier C, Henriet O, Mahillon J, Suárez-Ojeda ME, Del Moro G, De Sanctis M, Di Iaconi C, Weissbrodt DG (2018) An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chem Eng J 336:489–502. CrossRefGoogle Scholar
  131. Xia J, Ye L, Ren H, Zhang X-X (2018) Microbial community structure and function in aerobic granular sludge. Appl Microbiol Biotechnol 102:3967–3979. CrossRefGoogle Scholar
  132. Xin X, Lu H, Yao L, Leng L, Guan L (2017) Rapid formation of aerobic granular sludge and its mechanism in a continuous-flow bioreactor. Appl Biochem Biotechnol 181:424–433. CrossRefGoogle Scholar
  133. Yang S-F, Liu Q-S, Tay J-H, Liu Y (2004) Growth kinetics of aerobic granules developed in sequencing batch reactors. Lett Appl Microbiol 38:106–112. CrossRefGoogle Scholar
  134. Yilmaz G, Lemaire R, Keller J, Yuan Z (2008) Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnol Bioeng 100:529–541. CrossRefGoogle Scholar
  135. Yuan S, Gao M, Ma H, Afzal MZ, Wang Y-K, Wang M, Xu H, Wang S-G, Wang X-H (2018) Qualitatively and quantitatively assessing the aggregation ability of sludge during aerobic granulation process combined XDLVO theory with physicochemical properties. J Environ Sci 67:154–160. CrossRefGoogle Scholar
  136. Zhang Q, Hu J, Lee D-J (2016) Aerobic granular processes: current research trends. Bioresour Technol 210:74–80. CrossRefGoogle Scholar
  137. Zhang Z, Yu Z, Wang Z, Ma K, Xu X, Alvarezc PJJ, Zhu L (2019) Understanding of aerobic sludge granulation enhanced by sludge retention time in the aspect of quorum sensing. Bioresour Technol 272:226–232. CrossRefGoogle Scholar
  138. Zheng T, Li P, Wu W, Liu J, Shi Z, Guo X, Liu J (2018) State of the art on granular sludge by using bibliometric analysis. Appl Microbiol Biotechnol 102:3453–3473. CrossRefGoogle Scholar
  139. Zhou J, Zhao H, Hu M, Yu H, Xu X, Vidonish J, Alvarez PJJ, Zhu L (2015) Granular activated carbon as nucleating agent for aerobic sludge granulation: effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behaviour. Bioresour Technol 198:358–363. CrossRefGoogle Scholar
  140. Zhou J, Zhang Z, Zhao H, Yu H, Alvarez PJJ, Xu X, Zhu L (2016) Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress. Bioresour Technol 216:562–570. CrossRefGoogle Scholar
  141. Zhou J, Zhou Y, Yu H, Zhao Y, Ye K, Fang J, Wang H (2019) Determining the effects of aeration intensity and reactor height to diameter (H/D) ratio on granule stability based on bubble behaviour analysis. Environ Sci Pollut Res 26:784–796. CrossRefGoogle Scholar
  142. Zou J, Tao Y, Li J, Wu S, Ni Y (2018) Cultivating aerobic granular sludge in a developed continuous-flow reactor with two-zone sedimentation tank treating real and low-strength wastewater. Bioresour Technol 247:776–783. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Engineering and Biotechnology Environmental Group, Environmental Science Faculty and Center EULA–ChileUniversidad de ConcepciónConcepciónChile
  2. 2.Faculty of Engineering and SciencesAdolfo Ibáñez UniversityViña del MarChile
  3. 3.LEQUIA, Institute of the EnvironmentUniversity of GironaGironaSpain

Personalised recommendations