Reviews in Environmental Science and Bio/Technology

, Volume 18, Issue 3, pp 525–541 | Cite as

Biostimulation of anaerobic digestion using nanomaterials for increasing biogas production

  • Essam M. AbdelsalamEmail author
  • Mohamed SamerEmail author
Review Paper


Biomass energy, especially biogas production, is a renewable and sustainable form of energy. Biogas is becoming more important due to its environmentally-sound and energy-saving production technologies. The state-of-the-art focuses on the biostimulation of methanogens using nanomaterials which is a hot topic. Therefore, the objectives of this literature review are to introduce and define the uptake mechanism of nanoparticles (NPs) by methanogenic bacteria, review the enhancement of biogas and methane production using chemical additives such as trace elements and nanomaterials, discuss the biostimulating effects nanoparticles, review the anaerobic digestion of biomass, investigate the recommended concentrations of trace elements and nanoparticles in anaerobic digesters, present the role of some essential trace elements in various enzymes involved in anaerobic digestion, study the free metal mass transport and the metal adsorption to the microorganism surface as well as the metal transport into the microorganism and its biological response. It was found that the nanoparticles (NPs) biostimulate the bacterial cells which results in tremendously enhancing the bacterial activity and the kinetics of bacterial growth and cell division.

Graphic abstract


Biostimulation Nanomaterials Trace metals Biogas Anaerobic digestion 



The authors would like to acknowledge the Science and Technology Development Fund (STDF) of Egypt for funding this paper, where this research is conducted in the framework of the BIOGASMENA research Project (# 30278) under the umbrella of the ERANETMED program of Horizon 2020 launched by the European Commission.


  1. Abbasi T, Tauseef SM, Abbasi SA (2012) Biogas energy. Springer, New York, p 169Google Scholar
  2. Abdelsalam E, Samer M, Abdel-Hadi MA, Hassan HE, Badr Y (2015) Effects of CoCl2, NiCl2 and FeCl3 additives on biogas and methane production. Misr J Agric Eng 32(2):843–862Google Scholar
  3. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87(1):592–598Google Scholar
  4. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017a) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119Google Scholar
  5. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017b) Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 120:842–853Google Scholar
  6. Abdelsalam E, Samer M, Abdel-Hadi MA, Hassan HE, Badr Y (2018a) Influence of laser irradiation on rumen fluid for biogas production from dairy manure. Energy 163:404–415Google Scholar
  7. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2018b) Effects of laser irradiation and Ni nanoparticles on biogas production from manure anaerobic digestion. Waste Biomass Valor. Google Scholar
  8. Abdelsalam E, Hijazi O, Samer M, Yacoub IH, Ali AS, Ahmed RH, Bernhardt H (2019) Life cycle assessment of the use of laser radiation in biogas production from anaerobic digestion of manure. Renew Energy 142:130–136Google Scholar
  9. Aksu Z, Kutsal T, Gun S, Haciosmanoglu N, Gholaminejad M (1991) Investigation of biosorption of Cu(II), Ni(II) and Cr(VI) ions to activated sludge bacteria. Environ Technol 12:915–936Google Scholar
  10. Ali A, Mahar RB, Abdelsalam EM, Sherazi STH (2018) Kinetic modeling for bioaugmented anaerobic digestion of the organic fraction of municipal solid waste by using Fe3O4 nanoparticles. Waste Biomass Valor. Google Scholar
  11. Altas L (2009) Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J Hazard Mater 162:1551–1556Google Scholar
  12. Amaya OM, Barragán MTC, Tapia FJA (2013) Microbial biomass in batch and continuous system, biomass now—sustainable growth and use. In: Matovic MD (ed) InTech., ISBN: 978-953-51-1105-4
  13. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agr Ecosyst Environ 118:173–182Google Scholar
  14. Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K et al (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15:4295–4301Google Scholar
  15. Attia Y, Samer M (2017) Metal clusters: new era of hydrogen production. Renew Sustain Energy Rev 79:878–892Google Scholar
  16. Bacenetti J, Negri M, Fiala M, González-García S (2013) Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci Total Environ 463–464:541–551Google Scholar
  17. Balat M, Bozbas K (2006) Wood as an energy source: potential trends, usage of wood, and energy politics. Energy Sources Part A 28:837–844Google Scholar
  18. Bartacek J, Fermoso FG, Baldó-Urrutia AM, Van Hullebusch ED, Lens PNL (2008) Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation. J Ind Microbiol Biotechnol 35:1465–1474Google Scholar
  19. Benetto JC, Koster D, Schmitt B, Welfring J (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenerg 34:54–66Google Scholar
  20. Beydoun D, Amal R, Low GKC, McEvoy S (2000) Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J Phys Chem B 104:4387–4396Google Scholar
  21. Bini E (2010) Archaeal transformation ofmetals in the environment. FEMS Microbiol Ecol 73:1–16Google Scholar
  22. Bischofsberger W, Dichtl N, Rosenwinkel K-H, Seyfried CF, Böhnke B (2005) Anaerobtechnik, (Anaerobic technology), 2nd edn. Springer, Berlin (in German) Google Scholar
  23. Bonelli PR, Buonomo EL, Cukierman AL (2007) Pyrolysis of sugarcane bagasse and pyrolysis with an Argentinean subbituminous coal. Energy Sources Part A 29:731–740Google Scholar
  24. Börjesson P, Berglund M (2007) Environmental systems analysis of biogas systems—part II: the environmental impact of replacing various reference systems. Biomass Bioenerg 31:326–344Google Scholar
  25. Borole AP, Klasson KT, Ridenour W, Holland J, Karim K, Al-Dahhan MH (2006) Methane production in a 100-L up flow bioreactor by anaerobic digestion of farm waste. Appl Biochem Biotechnol 129(132):887–896. Google Scholar
  26. Bożym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M (2015) An analysis of metal concentrations in food wastes for biogas production. Renew Energy 77:467–472Google Scholar
  27. Braun V, Hantke K, Köster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145Google Scholar
  28. Campbell PGC, Errecalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton—applicability of the biotic ligand model. Comp Biochem Physiol C: Toxicol Pharmacol 133:189–206Google Scholar
  29. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99(10):4044–4064Google Scholar
  30. Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534Google Scholar
  31. Daquiado AR, Cho KM, Kim TY, Kim SC, Chang H-H, Lee YB (2014) Methanogenic archaea diversity in Hanwoo (Bos taurus coreanae) rumen fluid, rectal dung, and barn floor manure using a culture independent method based on mcrA gene sequences. Anaerobe 27:77–81Google Scholar
  32. Demirbas A (2007a) Combustion systems for biomass fuels. Energy Sources Part A 29:303–312Google Scholar
  33. Demirbas A (2007b) Modernization of biomass energy conversion facilities. Energy Sources Part B 2:227–235Google Scholar
  34. Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energy Convers Manag 50:1746–1760Google Scholar
  35. Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenerg 35:992–998Google Scholar
  36. Deppenmeier U (2002) Redox-driven proton translocation in methanogenic archaea. Cell Mol Life Sci 59(9):1513–1533Google Scholar
  37. Diaz I, Lopes AC, Pérez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Biores Technol 101(20):7724–7730Google Scholar
  38. Dinh HT, Kuever J, Mußmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427(6977):829–832Google Scholar
  39. Dressler D, Loewen A, Nelles M (2012) Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int J Life Cycle Assess 17(9):1104–1115Google Scholar
  40. Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9Google Scholar
  41. Elizabeth JN (2013) Tools to study distinct metal pools in biology. Dalton Trans 42:3210Google Scholar
  42. El-Mashad HM, Loon Van, Wilko KP, Zeeman G, Bot GPA, Lettinga G (2003) Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study. Rev Environ Sci Biotechnol 2(1):53–66Google Scholar
  43. Ermler U (2005) On the mechanism of methyl-coenzyme M reductase. Dalton Trans 21:3451–3458Google Scholar
  44. Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77Google Scholar
  45. Farrell J, Kason M, Melitas N, Li T (2000) Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ Sci Technol 34:514–521Google Scholar
  46. Feng X-M, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste-linking process to microflora. FEMS Microbiol Ecol 74:226–240Google Scholar
  47. Feng Y, Zhang Y, Quan X, Chen S (2014) Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res 52:242–250Google Scholar
  48. Ferguson AD, Deisenhofer J (2004) Metal import through microbial membranes. Cell 116:15–24Google Scholar
  49. Fermoso FG, Collins G, Bartacek J, O’Flaherty V, Lens P (2008) Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: induction and microbial community dynamics. Biotechnol Bioeng 99(1):49–58Google Scholar
  50. Fermoso FG, Bartacek J, Jansen S, Lens P (2009) Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Sci Total Environ 407(12):3652–3667Google Scholar
  51. Ferrer I, Garfi M, Uggetti E, Ferrer-Marti L, Calderon A, Velo E (2011) Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenerg 35(5):1668–1674Google Scholar
  52. Fränzle S, Markert B (2002) The biological system of the elements (BSE)—a brief introduction into historical and applied aspects with special reference on “ecotoxicological identity cards” for different element species (e.g. As and Sn). Environ Pollut 120:27–45Google Scholar
  53. Gao B, Zhu X, Xu C, Yue Q, Li W, Wei J (2008) Influence of extracellular polymeric substances on microbial activity and cell hydrophobicity in biofilms. J Chem Technol Biotechnol 83:227–232Google Scholar
  54. Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3:61Google Scholar
  55. Gonzalez-Gil G, Jansen S, Zandvoort MH, van Leeuwen HP (2003) Effect of yeast extract on speciation and bioavailability of nickel and cobalt in anaerobic bioreactors. Biotechnol Bioeng 82:134–142Google Scholar
  56. Guerrero-Barajas C, Field JA (2005) Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins. Biodegradation 16:215–228Google Scholar
  57. Guibaud G, Bordas F, Saaid A, D’Abzac P, Van Hullebusch E (2008) Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids Surf B 63:48–54Google Scholar
  58. Gustavsson J, Svensson BH, Karlsson A (2011) The feasibility of trace element supplementation for stable operation of wheat stillage-fed biogas tank reactors. Water Sci Technol 64:320–325Google Scholar
  59. Gustavsson J, Yekta SS, Sundberg C, Karlsson A, Ejlertsson J, Skyllberg U, Svensson BH (2013) Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Appl Energy 112:473–477Google Scholar
  60. Hassler CS, Slaveykova VI, Wilkinson KJ (2004) Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligandmodels. Environ Toxicol Chem 23:283–291Google Scholar
  61. Hattori S, Galushko AS, Kamagata Y, Schink B (2005) Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187:3471–3476Google Scholar
  62. Hendroko SR, Wahonob SK, Praptiningsih GA, Yudhantoe AS, Wahyudif I, Dohongg S (2014) The study of optimization hydrolysis substrate retention time and augmentation as an effort to increasing biogas productivity from Jatropha curcas Linn. Capsule husk at two stage digestion. Energy Procedia 47:255–262Google Scholar
  63. Hu C, Yan B, Wang K-J, Xiao X-M (2018) Modeling the performance of anaerobic digestion reactor by the anaerobic digestion system model (ADSM). J Environ Chem Eng 6(2):2095–2104Google Scholar
  64. Hudson RJM (1998) Which aqueous species control the rates of trace metal uptake by aquatic biota: observations and predictions of non-equilibrium effects. Sci Total Environ 219:95–115Google Scholar
  65. Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Biores Technol 101:8868–8872Google Scholar
  66. Ishaq F, Roussel J, Marquet CC, Bridgeman J (2005) Trace metal supplementation in sludge digesters. In: AD 12 IWA world congress, Guadalajara, Mexico, November 1–5Google Scholar
  67. Jarvis A, Nordberg A, Jarlsvik T, Mathisen B, Svensson BH (1997) Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenerg 12:453–460Google Scholar
  68. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150Google Scholar
  69. Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17Google Scholar
  70. Kameswari KS, Chitra K, Porselvam S, Thanasekaran K (2010) Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol Environ Policy 12:517–524Google Scholar
  71. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141Google Scholar
  72. Karekezi S, Lata K, Coelho ST (2004) Traditional biomass energy-improving its use and moving to modern energy use. In: Secretariat of the international conference for renewable energies, Bonn, June 1–4Google Scholar
  73. Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114(4):446–452Google Scholar
  74. Keum YS, Li X (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere 54:255–263Google Scholar
  75. Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinage Y, Abe N, Morimura S (2001) Influence of Ni2 + and Co2 + on methanogenic activity and the amounts of co-enzymes involved in methanogenesis. J Biosci Bioeng 91:590–595Google Scholar
  76. Kim YS, Kim YH (2003) Application of ferro-cobalt magnetic fluid for oil sealing. J Magn Magn Mater 267:105–110Google Scholar
  77. Kimming M, Sundberg C, Nordberg A, Baky A, Bernesson S, Norén O et al (2011) Biomass from agriculture in small-scale combined heat and power plants—a comparative life cycle assessment. Biomass Bioenerg 35:1572–1581Google Scholar
  78. Kloss R (1986) Planung von Biogasanlagen nach technischwirtschaftlichen Kriterien, (Biogas plants planning subject to techno-economic criteria). R. Oldenbourg Verlag, München (in German) Google Scholar
  79. Krom BPB (2002) Impact of the Mg2+-citrate transporter CitM on heavy metal toxicity in Bacillus subtilis. Arch Microbiol 178:370–375Google Scholar
  80. Krongthamchat K, Riffat R, Dararat S (2006) Effect of trace metals on halophilic and mixed cultures in anaerobic treatment. Int J Environ Sci Technol 3(2):103–112Google Scholar
  81. Kung JW, Löffler C, Dörner K, Heintz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M (2009) Identification and characterization of the tungsten containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci USA 106:17687–17692Google Scholar
  82. Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, Merlin D (2011) Nanomedicine in GI. Am J Physiol Gastrointest Liver Physiol 300:371–383Google Scholar
  83. Łebkowska M, Rutkowska-Narożniak A, Pajor E, Pochanke Z (2011) Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Biores Technol 102:8777–8782Google Scholar
  84. Lebuhn M, Liu F, Heuwinkel H, Gronauer A (2008) Biogas production from mono-digestion of maize silageelong-term process stability and requirements. Water Sci Technol 58(8):1645–1651Google Scholar
  85. Lee H, Shoda M (2008) Stimulation of anaerobic digestion of thickened sewage sludge by iron-rich sludge produced by the fenton method. J Biosci Bioeng 106:107–110Google Scholar
  86. Li Y, Chen Y, Wu J (2019) Enhancement of methane production in anaerobic digestion process: a review. Appl Energy 240:120–137Google Scholar
  87. Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy JD (2017) Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Biores Technol 239:345–352Google Scholar
  88. Lin R, Deng C, Cheng J, Xia A, Lens PNL, Jackson SA, Dobson ADW, Murphy JD (2018) Graphene facilitates biomethane production from protein-derived glycine in anaerobic digestion. Iscience 10:158–170Google Scholar
  89. Liu Y, Zhang Y, Quan X, Chen S, Zhao H (2011) Applying an electric field in a built-in zero valent iron-anaerobic reactor for enhancement of sludge granulation. Water Res 45:1258–1266Google Scholar
  90. Liu Y, Zhang Y, Zhao Z, Li Y, Quan X, Chen S (2012) Enhanced azo dye wastewater treatment in a two-stage anaerobic system with Fe0 dosing. Biores Technol 121:148–153Google Scholar
  91. Lo HM, Chiu HY, Lo SW, Lo FC (2012) Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion. Biores Technol 114:90–94Google Scholar
  92. Lü F, Zhou Q, Wua D, Wang T, Shao L, He P (2015) Dewaterability of anaerobic digestate from food waste: relationship with extracellular polymeric substances. Chem Eng J 262:932–938Google Scholar
  93. Luna-delRisco M, Orupold K, Dubourguier H-C (2011) Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189:603–608Google Scholar
  94. Maranon E, Salter AM, Castrillon L, Heavenb S, Fernández-Nava Y (2011) Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Manag 31(8):1745–1751Google Scholar
  95. Meissner Y, Lamprecht A (2008) Alternative drug delivery approaches for the therapy of inflammatory bowel disease. J Pharm Sci 97:2878–2891Google Scholar
  96. Meyer JS, Santore RC, Bobbitt JP, Debrey LD, Boese CJ, Paquin PR et al (1999) Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-ion activity does not. Environ Sci Technol 33(6):913–916Google Scholar
  97. Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plöchl M, Berga W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy 37(1):277–284Google Scholar
  98. Morel FMM (1983) Principles of aquatic chemistry. Wiley, New YorkGoogle Scholar
  99. Mu H, Chen Y (2011) Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Res 45:5612–5620Google Scholar
  100. Mu H, Chen Y, Xiao N (2011) Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Biores Technol 102:10305–10311Google Scholar
  101. Mudrack K, Kunst S (2003) Biologie der Abwasserreinigung, (Biology of wastewater treatment), 5th edn. Spektrum Akademischer Verlag, Berlin (in German) Google Scholar
  102. Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261Google Scholar
  103. Nag R, Auer A, Markey BK, Whyte P, Nolan S, O’Flaherty V, Russell L, Bolton D, Fenton O, Richards K, Cummins E (2019) Anaerobic digestion of agricultural manure and biomass—critical indicators of risk and knowledge gaps. Sci Total Environ. Google Scholar
  104. Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546Google Scholar
  105. Nassar NN (2012) Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview. In: Bhatnagar A (ed) Application of adsorbents for water pollution control. Bentham Science Publishers, SharjahGoogle Scholar
  106. Ndegwa PM, Thompson SA (2001) Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Biores Technol 76(2):107–112Google Scholar
  107. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557Google Scholar
  108. Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C et al (2010) Polyphasic analyses of methanogenic archaea communities in agricultural biogas plants. Appl Environ Microbiol 76(8):2540–2548Google Scholar
  109. Ni S-Q, Ni J, Yang N, Wang J (2013) Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Biores Technol 143:555–561Google Scholar
  110. Niyogi SS (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192Google Scholar
  111. Osuna MB, Iza J, Zandvoort M, Lens PNL (2003) Essential metal depletion in an anaerobic reactor. Water Sci Technol 48:1–8Google Scholar
  112. Pagenkopf GK (1983) Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pM, and water hardness. Environ Sci Technol 17:342–347Google Scholar
  113. Pantaleo A, De Gennaro B, Shah N (2013) Assessment of optimal size of anaerobic co-digestion plants: an application to cattle farms in the province of Bari (Italy). Renew Sustain Energy Rev 20:57–70Google Scholar
  114. Paquin PR, Zoltay V, Winfield RP, Wu KB, Mathew R, Santore RC et al (2002) Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver. Comp Biochem Physiol C: Toxicol Pharmacol 133:305–343Google Scholar
  115. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural Nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127Google Scholar
  116. Pertl A, Mostbauer P, Obersteiner G (2010) Climate balance of biogas upgrading systems. Waste Manag 30(1):92–99Google Scholar
  117. Phinney JT, Bruland KW (1994) Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom Thalassiosira-Weissflogii. Environ Sci Technol 28:1781–1790Google Scholar
  118. Pobeheim H, Munk B, Lindofer H, Guebitz GM (2011) Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res 45:781–787Google Scholar
  119. Pöschl M, Ward S, Owende P (2012) Environmental impacts of biogas deployment—part I: life cycle inventory for evaluation of production process emissions to air. J Clean Prod 24:168–183Google Scholar
  120. Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233Google Scholar
  121. Qiang H, Lang D-L, Li Y-Y (2012) High-solid mesophilic methane fermentation of food waste with an emphasis on iron, cobalt, and nickel requirements. Biores Technol 103:21–27Google Scholar
  122. Qiang H, Niu Q, Chi Y, Li Y (2013) Trace metals requirements for continuous thermophilic methane fermentation of high-solid food waste. Chem Eng J 222:330–336Google Scholar
  123. Raiswell R, Benning LG, Tranter M, Tulaczyk S (2008) Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem Trans 9:7Google Scholar
  124. Raj K, Moskowitz R (2002) A review of damping applications of ferrofluids. Trans Magn 16:358–363Google Scholar
  125. Rao PP, Seenayya G (1994) Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World J Microbiol Biotechnol 10(2):211–214Google Scholar
  126. Ravuri HK (2013) Role of factors influencing on anaerobic process for production of bio hydrogen. Future fuel. Int J Adv Chem 1(2):31–38Google Scholar
  127. Rehl T, Muller J (2013) CO2 abatement cost of greenhouse gas (GHG) mitigation by different conversion pathways. J Environ Manage 114:13–25Google Scholar
  128. Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327Google Scholar
  129. Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181Google Scholar
  130. Sahm H (1981) Biologie der methan-bildung, (biology of methane formation). Chem Ing Tec 53(11):854–863 (in German) Google Scholar
  131. Saito MA, Goepfert TJ, Ritt JT (2008) Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol Oceanogr 53:276–290Google Scholar
  132. Samer M (2010) A software program for planning and designing biogas plants. Trans ASABE 53(4):1277–1285Google Scholar
  133. Samer M (2012) Biogas plant constructions. In: Kumar S (ed) Biogas. InTech, Rijeka. ISBN 978-953-51-0204-5Google Scholar
  134. Samer M, Helmy K, Morsy S, Assal T, Amin Y, Mohamed S et al (2019) Cellphone application for computing biogas, methane and electrical energy production from different agricultural wastes. Comput Electron Agric 163:104873Google Scholar
  135. Schäfer W, Letho M, Teye F (2006) Dry anaerobic digestion of organic residues on-farm—a feasibility study. MTT Agrifood Research Finland, VihtiGoogle Scholar
  136. Schattauer A, Abdoun E, Weiland P, Plöchl M, Heiermann M (2011) Abundance of trace elements in demonstration biogas plants. Biosys Eng 108:57–65Google Scholar
  137. Seyfried CF, Bode H, Austermann-Haun U, Brunner G, von Hagel G, Kroiss H et al (1990) Anaerobe Verfahren zur Behandlung von Industrieabwässern, (Anaerobic process for industrial wastewater treatment). Korrespondenz Abwasser 37(10):1247–1251 (in German ) Google Scholar
  138. Shi JC, Liao XD, Wu YB, Liang JB (2011) Effect of antibiotics on methane arising from anaerobic digestion of pig manure. Anim Feed Sci Technol 166:457–463Google Scholar
  139. Singh R, Mandal SK (2011) Microbial removal of hydrogen sulfide from biogas. Energy Sources Part A Recovery Util Environ Effects 34(4):306–315Google Scholar
  140. Slaveykova VI, Parthasarathy N, Buffle J, Wilkinson KJ (2004) Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters. Sci Total Environ 328:55–68Google Scholar
  141. Slimane K, Fathya S, Assia K, Hamza M (2014) Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: process stability and biogas production. Energy Procedia 50:57–63Google Scholar
  142. Song M, Shin SG, Hwang S (2010) Methanogenic population dynamics assessed by real-time quantitative pcr in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Biores Technol 101:S23–S28Google Scholar
  143. Stock T, Rother M (2009) Selenoproteins in archaea and gram-positive bacteria. Biochem Biophys Acta 1790:1520–1532Google Scholar
  144. Sunda WG, Huntsman SA (1998) Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga chlamydomonas. Limnol Oceanogr 43:1055–1064Google Scholar
  145. Takashima M, Speece RE (1990) Mineral requirements for methane fermentation. Crit Rev Environ Control 19(5):465–479Google Scholar
  146. Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81:577–583Google Scholar
  147. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591Google Scholar
  148. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48Google Scholar
  149. Tricase C, Lombardi M (2012) Environmental analysis of biogas production systems. Biofuels 3(6):749–760Google Scholar
  150. Uemura SH (2010) Mineral requirements for mesophilic and thermophilic anaerobic digestion of organic solid waste. Int J Environ Res 4:33–40Google Scholar
  151. Van Leeuwen HP (1999) Metal speciation dynamics and bioavailability: inert and labile complexes. Environ Sci Technol 33:3743–3748Google Scholar
  152. Van Lier JB (2008) High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Sci Technol 57:1137–1148Google Scholar
  153. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. Google Scholar
  154. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272Google Scholar
  155. Von Moos N, Bowen P, Slaveykova V (2014) Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ Sci Nano 1:214–232Google Scholar
  156. Wang XJ, Yang GH, Feng YZ, Ren GX, Han XH (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Biores Technol 120:78–83Google Scholar
  157. Wang L, Aziz TN, de losReyes III FL (2013) Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste. Water Res 47(11):3835–3844Google Scholar
  158. Weiland P (2006) Anforderungen an Pflanzen seitens des Biogasanlagenbetreibers, (Exigencies for biogas plant operators). Thüringer Bioenergietag Schriftenreihe der Thüringer Landesanstalt für Landwirtschaft (TLL) 12:26–32 (in German) Google Scholar
  159. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860Google Scholar
  160. Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two stage thermophilic anaerobic membrane bioreactor. Biores Technol 102(9):5353–5360Google Scholar
  161. Wilson M, Kannangara K, Smith G, Simmons M, Raguse B (2002) Nanotechnology: basic science and emerging technologies. Chapman & Hall/CRC, New YorkGoogle Scholar
  162. Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88(11):1721–1731Google Scholar
  163. Wu D, Yang Z, Tian G (2011) Inhibitory effects of Cu (II) on fermentative methane production using bamboo wastewater as substrate. J Hazard Mater 195:170–174Google Scholar
  164. Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Biores Technol 95:1–10Google Scholar
  165. Yang G, Fang H, Wang J, Jia H, Zhang H (2019) Enhanced anaerobic digestion of up-flow anaerobic sludge blanket (UASB) by blast furnace dust (BFD): feasibility and mechanism. Int J Hydrogen Energy 44(33):17709–17719Google Scholar
  166. Yin D, Liu W, Zhai N, Yang G, Wang X, Feng Y, Ren G (2014) Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition. Biores Technol 166:373–380Google Scholar
  167. Yue Z-B, Yu H-Q (2009) Anaerobic batch degradation of cattail by rumen cultures. Int J Environ Pollut 38:299–308Google Scholar
  168. Yue Z-B, Li W-W, Yu H-Q (2013) Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Biores Technol 128:738–744Google Scholar
  169. Zahan Z, Othman MZ (2019) Effect of pre-treatment on sequential anaerobic co-digestion of chicken litter with agricultural and food wastes under semi-solid conditions and comparison with wet anaerobic digestion. Biores Technol 281:286–295Google Scholar
  170. Zandvoort MH, Geerts R, Lettinga G, Lens P (2002) Effect of long-term cobalt deprivation on methanol degradation in a methanogenic granular sludge reactor. Biotechnol Prog 18:1233–1239Google Scholar
  171. Zandvoort M, Gieteling J, Lettinga G, Lens P (2004) Stimulation of methanol degradation in UASB reactors: in situ versus pre-loading cobalt on anaerobic granular sludge. Biotechnol Bioeng 87:897–904Google Scholar
  172. Zandvoort MH, van Hullebusch ED, Gieteling J, Lens PNL (2006a) Granular sludge in full-scale anaerobic bioreactors: trace element content and deficiencies. Enzyme Microb Technol 39:337–346Google Scholar
  173. Zandvoort MH, van Hullebusch ED, Fermoso FG, Lens PNL (2006b) Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Eng Life Sci 6:293–301Google Scholar
  174. Zandvoort MH, Hullebusch ED, Golubnic S, Gieteling J, Lens PNL (2006c) Induction of cobalt limitation in methanol feed UASB-reactors. J Chem Technol Biotechnol 81(9):1486–1495Google Scholar
  175. Zerkle AL, House CH, Brantley SL (2005) Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci 305:467–502Google Scholar
  176. Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332Google Scholar
  177. Zhang YS, Zhang ZY, Suzuki K, Maekawa T (2003) Uptake and mass balance of trace metals for methane producing bacteria. Biomass Bioenerg 25:427–433Google Scholar
  178. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom 10:1–26. Google Scholar
  179. Zhang Y, Jing Y, Zhang J, Sun L, Quan X (2010) Performance of a ZVI-UASB reactor for azo dye wastewater treatment. J Chem Technol Biotechnol. Google Scholar
  180. Zhen G, Lu X, Li Y-Y, Liu Y, Zhao Y (2015) Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge. Chem Eng J 263:461–470Google Scholar
  181. Zitomer DH, Johnson CC, Speece RE (2008) Metal stimulation and municipal digester thermophilic/mesophilic activity. J Environ Eng 134:42–47Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Institute of Laser Enhanced Sciences (NILES)Cairo UniversityGizaEgypt
  2. 2.Department of Agricultural Engineering, Faculty of AgricultureCairo UniversityGizaEgypt

Personalised recommendations