Advertisement

A review of anaerobic digestion bio-kinetics

  • Esmat Maleki
  • Alnour Bokhary
  • B. Q. Liao
Review Paper
  • 181 Downloads

Abstract

Anaerobic digestion is the key to sustainable wastewater management and bioenergy production. Kinetics plays an important role in the design of bioreactors, processes, and process scale-up in anaerobic digestion. This article focuses on a state-of-the-art literature review on the experimental kinetic studies of conventional anaerobic bioreactors and anaerobic membrane bioreactors. Various kinetic models that were used to fit the experimental data and derive the kinetic parameters are summarized and discussed in the literature. The values of the maximum specific growth rate µmax, half saturation constant Ks, decay co-efficient kd, sludge yield Y, and methane yield YCH4 from experimental studies are summarized for each model. This paper can serve as an updated comprehensive source of anaerobic bio-kinetic studies and digester design.

Keywords

Anaerobic digestion Biokinetics Anaerobic digesters Anaerobic membrane bioreactor Biokinetic model 

Notes

Acknowledgements

The authors thank the financial support of the Natural Science and Engineering Research Council of Canada (NSERC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11157_2018_9484_MOESM1_ESM.docx (158 kb)
Supplementary material 1 (DOCX 157 kb)

References

  1. Abdurahman NH, Rosli YM, Azhari NH (2011) Development of a membrane anaerobic system (MAS) for palm oil mill effluent (POME) treatment. Desalination 266(1–3):208–212.  https://doi.org/10.1016/j.desal.2010.08.028 CrossRefGoogle Scholar
  2. Acharya BK, Pathak H, Mohana S, Shouche Y, Singh V, Madamwar D (2011) Kinetic modeling and microbial community assessment of anaerobic biphasic fixed film bioreactor treating distillery spent wash. Water Res 45(14):4248–4259.  https://doi.org/10.1016/j.watres.2011.05.048 CrossRefGoogle Scholar
  3. Aiba S, Shoda M, Nagatani M (1968) Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng 10(6):845–864CrossRefGoogle Scholar
  4. Aivasidis A, Diamantis VI (2005) Biochemical reaction engineering and process development in anaerobic wastewater treatment. Technol Transf Biotechnol 92:49–76.  https://doi.org/10.1007/b98919 CrossRefGoogle Scholar
  5. Al-Malack MH, Aldana GR (2016) Biokinetic coefficients of anaerobic immersed membrane bioreactor (AnIMBR) treating dairy wastewater. Desalin Water Treat 57(59):28600–28609.  https://doi.org/10.1080/19443994.2016.1192566 CrossRefGoogle Scholar
  6. Anderson GK, Kasapgil B, Ince O (1996) Microbial kinetics of a membrane anaerobic reactor system. Environ Technol 17(5):449–464.  https://doi.org/10.1080/09593331708616407 CrossRefGoogle Scholar
  7. Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10(6):707–723.  https://doi.org/10.1002/bit.260100602 CrossRefGoogle Scholar
  8. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38(4):560–564.  https://doi.org/10.1007/bf00242955 CrossRefGoogle Scholar
  9. Antoniou P, Hamilton J, Koopman B, Jain R, Holloway B, Lyberatos G, Svoronos SA (1990) Effect of temperature and ph on the effective maximum specific growth rate of nitrifying bacteria. Water Res 24(1):97–101.  https://doi.org/10.1016/0043-1354(90)90070-M CrossRefGoogle Scholar
  10. Antwi P, Li J, Boadi PO, Meng J, Koblah Quashie F, Wang X, Buelna G (2017) Efficiency of an up-flow anaerobic sludge blanket reactor treating potato starch processing wastewater and related process kinetics, functional microbial community, and sludge morphology. Bioresour Technol 239:105–116.  https://doi.org/10.1016/j.biortech.2017.04.124 CrossRefGoogle Scholar
  11. Batstone DJ (2006) Mathematical modelling of anaerobic reactors treating domestic wastewater- rational criteria for model use. Rev Environ Sci Bio Technol 5(1):57–71.  https://doi.org/10.1007/s11157-005-7191-z CrossRefGoogle Scholar
  12. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Vavilin VA (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73CrossRefGoogle Scholar
  13. Bazua C, Wilke C (1977) Ethanol effects on the kinetics of a continuous fermentation with Saccharomyces cerevisiae. In Biotechnology and bioengineering symposium no. 7, pp 105–118. California University, Berkeley (USA). Lawrence Berkeley LabGoogle Scholar
  14. Bergter F (1983) Wachstum von Mikroorganismen: Experimente und Modelle, 2nd edn. VEB Gustav Fischer Verlag, JenaGoogle Scholar
  15. Bérubé PR, Hall ER (2000) Effects of elevated operating temperatures on methanol removal kinetics from synthetic kraft pulp mill condensate using a membrane bioreactor. Water Res 34(18):4359–4366.  https://doi.org/10.1016/S0043-1354(00)00203-7 CrossRefGoogle Scholar
  16. Boekhorst R, Ogilvie J, Pos J (1981) An overview of current simulation models for anaerobic digesters. Livest Waste Renew Resour 2–81:85Google Scholar
  17. Borja R, Martín A, Alonso V (1992) Influence of the microorganism support on the kinetics of anaerobic fermentation of condensation water from thermally concentrated olive mill wastewater. Biodegradation 3(1):93–103.  https://doi.org/10.1007/bf00189637 CrossRefGoogle Scholar
  18. Borja R, Martin A, Durán MM, Barrios J (1993a) Influence of immobilization supports on the kinetics of anaerobic purification of cheese factory wastewaters. Biomass Bioenergy 4(1):15–22.  https://doi.org/10.1016/0961-9534(93)90023-W CrossRefGoogle Scholar
  19. Borja R, Martín A, Luque M, Durán MM (1993b) Kinetic study of anaerobic digestion of wine distillery wastewater. Process Biochem 28(2):83–90.  https://doi.org/10.1016/0032-9592(93)80011-5 CrossRefGoogle Scholar
  20. Borja R, Martín A, Durán MM, Luque M, Alonso V (1994) Kinetic study of anaerobic digestion of brewery wastewater. Process Biochem 29(8):645–650.  https://doi.org/10.1016/0032-9592(94)80041-3 CrossRefGoogle Scholar
  21. Borja R, Martín A, Banks CJ, Alonso V, Chica A (1995) A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures. Environ Pollut 88(1):13–18.  https://doi.org/10.1016/0269-7491(95)91043-K CrossRefGoogle Scholar
  22. Borja R, González E, Raposo F, Millán F, Martín A (2002) Kinetic analysis of the psychrophilic anaerobic digestion of wastewater derived from the production of proteins from extracted sunflower flour. J Agric Food Chem 50(16):4628–4633.  https://doi.org/10.1021/jf0116045 CrossRefGoogle Scholar
  23. Borja R, Martín A, Rincón B, Raposo F (2003) Kinetics for substrate utilization and methane production during the mesophilic anaerobic digestion of two phases Olive Pomace (TPOP). J Agric Food Chem 51(11):3390–3395.  https://doi.org/10.1021/jf021059n CrossRefGoogle Scholar
  24. Buhr H, Andrews J (1977) The thermophilic anaerobic digestion process. Water Res 11(2):129–143CrossRefGoogle Scholar
  25. Büyükkamaci N, Filibeli A (2002) Determination of kinetic constants of an anaerobic hybrid reactor. Process Biochem 38(1):73–79CrossRefGoogle Scholar
  26. Chávez PC, Castillo LR, Dendooven L, Escamilla-Silva EM (2005) Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor. Bioresour Technol 96(15):1730–1736.  https://doi.org/10.1016/j.biortech.2004.08.017 CrossRefGoogle Scholar
  27. Chen YR, Hashimoto AG (1978) Kinetics of methane fermentation: science and education administration, Clay Center, NE (USA). Meat Animal Research CenterGoogle Scholar
  28. Contois DE (1959) Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. Microbiology 21(1):40–50.  https://doi.org/10.1099/00221287-21-1-40 CrossRefGoogle Scholar
  29. Converti A, Del Borghi M, Ferraiolo G (1993) Influence of organic loading rate on the anaerobic treatment of high strength semisynthetic wastewaters in a biological fluidized bed. Chem Eng J 52(1):B21–B28CrossRefGoogle Scholar
  30. Córdoba V, Fernández M, Santalla E (2017) The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-0039-6 CrossRefGoogle Scholar
  31. Das A, Mondal C (2013) Kinetic study of biogas production from mixed fruit & vegetable waste. Int J Eng Sci Res Technol 2(10):2646–2656Google Scholar
  32. Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J Water Pollut Control Fed 53(3):352–366Google Scholar
  33. Enitan AM, Adeyemo J (2014) Estimation of bio-kinetic coefficients for treatment of brewery wastewater. World Academy of Science, Engineering, and Technology, International. J Environ Chem Ecol Geol Geophys Eng 8(6):407–411Google Scholar
  34. Esener AA, Roels JA, Kossen NWF (1981) The influence of temperature on the maximum specific growth rate of Klebsiella pneumoniae. Biotechnol Bioeng 23(6):1401–1405.  https://doi.org/10.1002/bit.260230620 CrossRefGoogle Scholar
  35. Faisal M, Unno H (2001) Kinetic analysis of palm oil mill wastewater treatment by a modified anaerobic baffled reactor. Biochem Eng J 9(1):25–31.  https://doi.org/10.1016/s1369-703x(01)00122-x CrossRefGoogle Scholar
  36. Fencl Z (1966) Theoretical analysis of continuous culture systems. In: Málek I, Fencl Z (eds) Theoretical and methodological basis of continuous culture of microorganisms. Academic Press, New YorkGoogle Scholar
  37. Fiestas JA, Martín A, Borja R (1990) Influence of immobilization supports on the kinetic constants of anaerobic purification of olive mill wastewater. Biol Wastes 33(2):131–142.  https://doi.org/10.1016/0269-7483(90)90153-J CrossRefGoogle Scholar
  38. Fueyo G, Gutierrez A, Berrueta J (2003) Kinetics of anaerobic treatment of landfill leachates combined with urban wastewaters. Waste Manag Res 21(2):145–154CrossRefGoogle Scholar
  39. Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modeling of anaerobic digestion process. In: Ahring BK, Angelidaki I, de Macario EC, Gavala HN, Hofman-Bang J, Macario AJL, Elferink SJWHO, Raskin L, Stams AJM, Westermann P, Zheng D (eds) Biomethanation I. Springer, Berlin, pp 57–93CrossRefGoogle Scholar
  40. Gerber M, Span R (2008) An analysis of available mathematical models for anaerobic digestion of organic substances for production of biogas. Chair of Thermodynamics Germany. International Gas Union Research Conference (IGRC 2008): p 1294, 8–10 October 2008, Paris, France. ISBN: 978-1-61567-870-9Google Scholar
  41. Ghose T, Tyagi R (1979) Rapid ethanol fermentation of cellulose hydrolysate. II. Product and substrate inhibition and optimization of fermentor design. Biotechnol Bioeng 21(8):1401–1420CrossRefGoogle Scholar
  42. Grant D (1967) Kinetic aspects of the growth of Klebsiella aerogenes with some benzenoid carbon sources. Microbiology 46(2):213–224Google Scholar
  43. Grau P, Dohányos M, Chudoba J (1975) Kinetics of multicomponent substrate removal by activated sludge. Water Res 9(7):637–642.  https://doi.org/10.1016/0043-1354(75)90169-4 CrossRefGoogle Scholar
  44. Han K, Levenspiel O (1988) Extended Monod kinetics for substrate, product, and cell inhibition. Biotechnol Bioeng 32(4):430–447CrossRefGoogle Scholar
  45. Henze M, Harremoës P (1983) Anaerobic treatment of wastewater in fixed film reactors—a literature review. Water Sci Technol 15(8–9):1–101CrossRefGoogle Scholar
  46. Hill D, Barth C (1977) A fundamental approach to anaerobic lagoon analysis. In: Paper presented at the proceeding of the cornell agricultural waste management conference, Washington Google Scholar
  47. Hinshelwood CN (1946) Chemical kinetics of the bacterial cell. Clarendon Press, LondonGoogle Scholar
  48. Hu WC, Thayanithy K, Forster CF (2002) A kinetic study of the anaerobic digestion of ice-cream wastewater. Process Biochem 37(9):965–971.  https://doi.org/10.1016/S0032-9592(01)00310-7 CrossRefGoogle Scholar
  49. Ierusalimsky N (1967) Bottle-necks in metabolism as growth rate controlling factors. HMSO, LondonGoogle Scholar
  50. Işik M, Sponza DT (2005) Substrate removal kinetics in an up-flow anaerobic sludge blanket reactor decolorising simulated textile wastewater. Process Biochem 40(3):1189–1198.  https://doi.org/10.1016/j.procbio.2004.04.014 CrossRefGoogle Scholar
  51. Jo Y, Kim J, Hwang S, Lee C (2015) Anaerobic treatment of rice winery wastewater in an up-flow filter packed with steel slag under different hydraulic loading conditions. Bioresour Technol 193:53–61.  https://doi.org/10.1016/j.biortech.2015.06.046 CrossRefGoogle Scholar
  52. Jo Y, Kim J, Lee C (2016) Continuous treatment of dairy effluent in a downflow anaerobic filter packed with slag grains: reactor performance and kinetics. J Taiwan Inst Chem Eng 68:147–152.  https://doi.org/10.1016/j.jtice.2016.08.021 CrossRefGoogle Scholar
  53. Kaewsuk J, Thorasampan W, Thanuttamavong M, Seo GT (2010) Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. J Environ Manag 91(5):1161–1168CrossRefGoogle Scholar
  54. Kapdan IK (2005) Kinetic analysis of dyestuff and COD removal from synthetic wastewater in an anaerobic packed column reactor. Process Biochem 40(7):2545–2550.  https://doi.org/10.1016/j.procbio.2004.11.002 CrossRefGoogle Scholar
  55. Keshtkar A, Ghaforian H, Abolhamd G, Meyssami B (2001) Dynamic simulation of cyclic batch anaerobic digestion of cattle manure. Bioresour Technol 80(1):9–17.  https://doi.org/10.1016/s0960-8524(01)00071-2 CrossRefGoogle Scholar
  56. Kleerebezem R, Macarief H (2003) Treating industrial wastewater: anaerobic digestion comes of age. Chem Eng 110(4):56–64Google Scholar
  57. Knobel AN, Lewis AE (2002) A mathematical model of a high sulphate wastewater anaerobic treatment system. Water Res 36(1):257–265.  https://doi.org/10.1016/S0043-1354(01)00209-3 CrossRefGoogle Scholar
  58. Kythreotou N, Florides G, Tassou SA (2014) A review of simple to scientific models for anaerobic digestion. Renew Energy 71:701–714.  https://doi.org/10.1016/j.renene.2014.05.055 CrossRefGoogle Scholar
  59. Lai LS, Fakhru’i-Razi A, Idris A, Hassan MA (1999) The performance and kinetic study of membrane anaerobic system in treating POME. Artif Cells Blood Substit Biotechnol 27(5–6):469–474.  https://doi.org/10.3109/10731199909117721 CrossRefGoogle Scholar
  60. Lawrence AW, McCarty PL (1969) Kinetics of methane fermentation in anaerobic treatment. J Water Pollut Control Fed 41(2):R1–R17Google Scholar
  61. Lawrence AW, McCarty PL (1970) Unified basis for biological treatment design and operation. J Sanit Eng Div 96(3):757–778Google Scholar
  62. Liao BQ, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: applications and research directions. Crit Rev Environ Sci Technol 36(6):489–530CrossRefGoogle Scholar
  63. Liew Abdullah AG, Idris A, Ahmadun FR, Baharin BS, Emby F, Megat Mohd Noor MJ, Nour AH (2005) A kinetic study of a membrane anaerobic reactor (MAR) for treatment of sewage sludge. Desalination 183(1):439–445.  https://doi.org/10.1016/j.desal.2005.03.044 CrossRefGoogle Scholar
  64. Lin C, Noike T, Sato K, Matsumoto J (1987) Temperature characteristics of the methanogenesis process in anaerobic digestion. Water Sci Technol 19(1–2):299–300CrossRefGoogle Scholar
  65. Liu CF, Yuan XZ, Zeng GM, Li WW, Li J (2008) Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol 99(4):882–888.  https://doi.org/10.1016/j.biortech.2007.01.013 CrossRefGoogle Scholar
  66. Luo G, Li J, Li Y, Wang Z, Li WT, Li AM (2016) Performance, kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate: role of external hydraulic circulation. Bioresour Technol 222:470–477.  https://doi.org/10.1016/j.biortech.2016.10.023 CrossRefGoogle Scholar
  67. Lyberatos G, Skiadas I (1999) Modelling of anaerobic digestion—a review. Glob Nest Int J 1(2):63–76Google Scholar
  68. Martín A, Borja R, Chica A (1993) Kinetic study of an anaerobic fluidized bed system used for the purification of fermented olive mill wastewater. J Chem Technol Biotechnol 56(2):155–162.  https://doi.org/10.1002/jctb.280560207 CrossRefGoogle Scholar
  69. McCarty PL (1965) Thermodynamics of biological synthesis and growth. Air Water Pollut 9(10):621Google Scholar
  70. Mekonnen A, Leta S, Njau KN (2017) Kinetic analysis of anaerobic sequencing batch reactor for the treatment of tannery wastewater. Afr J Environ Sci Technol 11(6):339–348CrossRefGoogle Scholar
  71. Metcalf, Eddy (1991) Wastewater engineering- treatment, disposal, and reuse, 3rd edn. McGraw-Hill, IncGoogle Scholar
  72. Mitsdörffer R (1991) Charakteristika der zweistufigen thermophilen, mesophilen Schlammfaulung unter Berücksichtigung kinetischer Ansätze. Lehrstuhl und Prüfamt für Wassergütewirtschaft und Gesundheitsingenieurwesen, Techn. UnivGoogle Scholar
  73. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3(1):371–394.  https://doi.org/10.1146/annurev.mi.03.100149.002103 CrossRefGoogle Scholar
  74. Moser H (1958) The dynamics of bacterial populations maintained in the chemostat. Carnegie Institution of WashingtonGoogle Scholar
  75. Moser A (1981) Bioprozesstechnik: Berechnungsgrundlagen der Reaktionstechnik biokatalytischer Prozesse. Springer, New YorkCrossRefGoogle Scholar
  76. O’Flaherty V, Mahony T, O’Kennedy R, Colleran E (1998) Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochem 33(5):555–569.  https://doi.org/10.1016/S0032-9592(98)00018-1 CrossRefGoogle Scholar
  77. O’Rourke JT, McCarty PL (1968) Kinetics of anaerobic waste treatment at reduced temperatures. Department of Civil Engineering, Stanford UniversityGoogle Scholar
  78. Pandian M, Huu-Hao N, Pazhaniappan S (2011) Substrate removal kinetics of an anaerobic hybrid reactor treating pharmaceutical wastewater. J Water Sustain 1(3):301–312Google Scholar
  79. Pauss A, Andre G, Perrier M, Guiot SR (1990) Liquid-to-gas mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl Environ Microbiol 56(6):1636–1644Google Scholar
  80. Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21(5–6):411–490.  https://doi.org/10.1080/10643389109388424 CrossRefGoogle Scholar
  81. Pfeffer JT (1974) Temperature effects on anaerobic fermentation of domestic refuse. Biotechnol Bioeng 16(6):771–787.  https://doi.org/10.1002/bit.260160607 CrossRefGoogle Scholar
  82. Powell EO (1967) The growth rate of microorganisms as a function of substrate concentration. Paper presented at the 3rd international symposium, Salisbury, LondonGoogle Scholar
  83. Raja Priya K, Sandhya S, Swaminathan K (2009) Kinetic analysis of treatment of formaldehyde containing wastewater in UAFB reactor. Chem Eng J 148(2–3):212–216.  https://doi.org/10.1016/j.cej.2008.08.036 CrossRefGoogle Scholar
  84. Rajagopal R, Torrijos M, Kumar P, Mehrotra I (2013) Substrate removal kinetics in high-rate up-flow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters. J Environ Manag 116:101–106.  https://doi.org/10.1016/j.jenvman.2012.11.032 CrossRefGoogle Scholar
  85. Raposo F, Borja R, Sánchez E, Martín MA, Martín A (2004) Performance and kinetic evaluation of the anaerobic digestion of two-phase olive mill effluents in reactors with suspended and immobilized biomass. Water Res 38(8):2017–2026.  https://doi.org/10.1016/j.watres.2004.01.007 CrossRefGoogle Scholar
  86. Rincón B, Raposo F, Domínguez JR, Millán F, Jiménez AM, Martín A, Borja R (2006) Kinetic models of an anaerobic bioreactor for restoring wastewater generated by industrial chickpea protein production. Int Biodeterior Biodegradation 57(2):114–120.  https://doi.org/10.1016/j.ibiod.2005.12.004 CrossRefGoogle Scholar
  87. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New YorkGoogle Scholar
  88. Rodriguez-Martinez J, Rodriguez-Garza I, Pedraza-Flores E, Balagurusamy N, Sosa-Santillan G, Garza-Garcia Y (2002) Kinetics of anaerobic treatment of slaughterhouse wastewater in batch and up-flow anaerobic sludge blanket reactor. Bioresour Technol 85(3):235–241CrossRefGoogle Scholar
  89. Rosso L, Lobry JR, Bajard S, Flandrois JP (1995) Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl Environ Microb 61(2):610–616Google Scholar
  90. Sánchez E, Borja R, Travieso L (1996) Kinetics of sugar mill wastewater treatment by down-flow anaerobic fixed bed reactors. Bioprocess Eng 14(3):145–150.  https://doi.org/10.1007/bf00369432 CrossRefGoogle Scholar
  91. Sánchez E, Borja R, Weiland P, Travieso L, Martín A (2000) Effect of temperature and pH on the kinetics of methane production, organic nitrogen and phosphorus removal in the batch anaerobic digestion process of cattle manure. Bioprocess Eng 22(3):247–252.  https://doi.org/10.1007/s004490050727 CrossRefGoogle Scholar
  92. Sandhya S, Swaminathan K (2006) Kinetic analysis of treatment of textile wastewater in hybrid column up-flow anaerobic fixed bed reactor. Chem Eng J 122(1):87–92.  https://doi.org/10.1016/j.cej.2006.04.006 CrossRefGoogle Scholar
  93. Senturk E, Ýnce M, Onkal Engin G (2013) Assesment of kinetic parameters for thermophilic anaerobic contact reactor treating food-processing wastewater. Int J Environ Res 7(2):293–302Google Scholar
  94. Şentürk E, İnce M, Onkal Engin G (2010) Kinetic evaluation and performance of a mesophilic anaerobic contact reactor treating medium-strength food-processing wastewater. Bioresour Technol 101(11):3970–3977.  https://doi.org/10.1016/j.biortech.2010.01.034 CrossRefGoogle Scholar
  95. Sharma MK, Kazmi AA (2015) Substrate removal kinetics of domestic wastewater treatment in a two-stage anaerobic system. Sep Sci Technol 50(17):2752–2758.  https://doi.org/10.1080/01496395.2015.1061007 CrossRefGoogle Scholar
  96. Siegrist H, Vogt D, Garcia-Heras JL, Gujer W (2002) Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36(5):1113–1123.  https://doi.org/10.1021/es010139p CrossRefGoogle Scholar
  97. Sinclair CG, Kristiansen B (1993) Fermentationsprozesse: Kinetik und modelling. Springer, BerlinCrossRefGoogle Scholar
  98. Sinechal XJ, Installe MJ, Nyns EJ (1979) Differentiation between acetate and higher volatile acids in the modeling of the anaerobic biomethanation process. Biotechnol Lett 1(8):309–314.  https://doi.org/10.1007/bf01388184 CrossRefGoogle Scholar
  99. Singh KK, Vaishya RC (2017) A biodegradation based kinetic study of UASB reactor in treating municipal wastewater through various models. In: 49th Annual Convention of Indian water works Association at VNIT Nagpur, pp. 19–21Google Scholar
  100. Sponza DT, Uluköy A (2008) Kinetic of carbonaceous substrate in an up-flow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP). J Environ Manag 86(1):121–131.  https://doi.org/10.1016/j.jenvman.2006.11.030 CrossRefGoogle Scholar
  101. Stover E L, Kincannon D F (1982) Rotating biological contactor scale-up and design. Oklahoma State Univ StillwaterGoogle Scholar
  102. Sumihar H, Setiadi T, Wenten I (2002) Kinetic study on the treatment of synthetic palm oil mill effluent by anaerobic membrane bioreactor (AMB). J Itenas 1(6):1–9Google Scholar
  103. Surendra KC, Sawatdeenarunat C, Shrestha S, Sung S, Khanal SK (2015) Anaerobic digestion-based biorefinery for bioenergy and biobased products. Ind Biotechnol 11(2):103–112.  https://doi.org/10.1089/ind.2015.0001 CrossRefGoogle Scholar
  104. Tay JH, Show KY, Jeyaseelan S (1996) Effects of media characteristics on performance of upflow anaerobic packed-bed reactors. J Environ Eng 122(6):469–476.  https://doi.org/10.1061/(ASCE)0733-9372(1996)122:6(469) CrossRefGoogle Scholar
  105. Van der Meer R, Heertjes P (1983) Mathematical description of anaerobic treatment of wastewater in up-flow reactors. Biotechnol Bioeng 25(11):2531–2556CrossRefGoogle Scholar
  106. Venkataraman J, Kaul SN, Satyanarayan S (1992) Determination of kinetic constants for a two-stage anaerobic up-flow packed-bed reactor for dairy wastewater. Bioresour Technol 40(3):253–261.  https://doi.org/10.1016/0960-8524(92)90152-N CrossRefGoogle Scholar
  107. Wang S, Chandrasekhara Rao N, Qiu R, Moletta R (2009a) Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Bioresour Technol 100(23):5641–5647.  https://doi.org/10.1016/j.biortech.2009.06.028 CrossRefGoogle Scholar
  108. Wang S, Chandrasekhara Rao N, Qiu R, Moletta R (2009b) Treatability and kinetic analysis of anaerobic moving bed biofilm reactor treating high strength milk permeate. Desalination Water Treat 4(1–3):191–197.  https://doi.org/10.5004/dwt.2009.375 CrossRefGoogle Scholar
  109. Webb JL (1963) Enzyme and metabolic inhibitorsGoogle Scholar
  110. Westermann P, Ahring BK, Mah RA (1989) Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl Environ Microbiol 55(5):1262–1266Google Scholar
  111. Wong YS, Kadir M, Teng TT (2009) Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. Bioresour Technol 100(21):4969–4975.  https://doi.org/10.1016/j.biortech.2009.04.074 CrossRefGoogle Scholar
  112. Xu F, Huang Z, Miao H, Ren H, Zhao M, Ruan W (2013) Identical full-scale biogas-lift reactors (BLRs) with anaerobic granular sludge and residual activated sludge for brewery wastewater treatment and kinetic modeling. J Environ Sci 25(10):2031–2040.  https://doi.org/10.1016/s1001-0742(12)60268-x CrossRefGoogle Scholar
  113. Yano T, Nakahara T, Kamiyama S, Yamada K (1966) Kinetic studies on microbial activities in concentrated solutions. Part. I. Effect of excess sugars on oxygen uptake rate of a cell free respiratory system. Agric Biol Chem 30(1):42–48Google Scholar
  114. Yilmaz T, Yuceer A, Basibuyuk M (2008) A comparison of the performance of mesophilic and thermophilic anaerobic filters treating paper mill wastewater. Bioresour Technol 99(1):156–163.  https://doi.org/10.1016/j.biortech.2006.11.038 CrossRefGoogle Scholar
  115. Yu H, Wilson F, Tay JH (1998) Kinetic analysis of an anaerobic filter treating soybean wastewater. Water Res 32(11):3341–3352.  https://doi.org/10.1016/s0043-1354(98)00102-x CrossRefGoogle Scholar
  116. Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energ Rev 38:383–392.  https://doi.org/10.1016/j.rser.2014.05.038 CrossRefGoogle Scholar
  117. Zinatizadeh AAL, Mohamed AR, Najafpour GD, Hasnain Isa M, Nasrollahzadeh H (2006) Kinetic evaluation of palm oil mill effluent digestion in a high rate up-flow anaerobic sludge fixed film bioreactor. Process Biochem 41(5):1038–1046.  https://doi.org/10.1016/j.procbio.2005.11.011 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringLakehead UniversityThunder BayCanada
  2. 2.Faculty of Natural Resources ManagementLakehead UniversityThunder BayCanada

Personalised recommendations