Advertisement

Reviews in Environmental Science and Bio/Technology

, Volume 17, Issue 3, pp 531–551 | Cite as

Electrochemically mediated CO2 reduction for bio-methane production: a review

  • Anirudh Bhanu Teja Nelabhotla
  • Carlos Dinamarca
review paper
  • 220 Downloads

Abstract

A number of methods for carbon capture, more specifically, CO2 capture have been researched in the past few years. One such method is electrochemical CO2 reduction to biomethane which also serves the purpose of biogas upgradation using microbial electrosynthesis systems. This technology is also known as Power to Gas technology and the review starts with the importance and requirement of PtG in the modern world by studying energy production and consumption patterns in Europe, with a focus on Norway. The paper summarises the recent works and concepts in the field of bioelectrochemical systems with a focus on electron transfer mechanisms, biocatalysts and reactor designs. Works and gaps in the studies of direct interspecies electron transfer and biocathode developments are discussed in detail. This is followed by a discussion explaining various reactor designs, the advantages of single chambered microbial reactors and the importance of reactors that combine anaerobic digestion with microbial electrolysis cells.

Keywords

Bio-methane CO2 reduction Microbial electrosynthesis systems Power to gas Anaerobic digestion Microbial electrolysis cells 

Notes

Acknowledgements

The authors would like to thank The Research Council of Norway for supporting this research project.

References

  1. Aryal N, Halder A, Tremblay PL et al (2016) Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochim Acta 217:117–122.  https://doi.org/10.1016/j.electacta.2016.09.063 Google Scholar
  2. Aryal N, Ammam F, Patil SA, Pant D (2017a) An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem 19:5748–5760.  https://doi.org/10.1039/C7GC01801K Google Scholar
  3. Aryal N, Tremblay PL, Lizak DM, Zhang T (2017b) Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide. Bioresour Technol 233:184–190.  https://doi.org/10.1016/j.biortech.2017.02.128 Google Scholar
  4. Aulenta F, Catervi A, Majone M et al (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559.  https://doi.org/10.1021/es0624321 Google Scholar
  5. Aulenta F, Reale P, Canosa A et al (2010) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens Bioelectron 25:1796–1802.  https://doi.org/10.1016/j.bios.2009.12.033 Google Scholar
  6. Awate B, Steidl RJ, Hamlischer T, Reguera G (2017) Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms. J Power Sources 356:510–518.  https://doi.org/10.1016/J.JPOWSOUR.2017.02.053 Google Scholar
  7. Back S, Yeom MS, Jung Y (2015) Active Sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal 5:5089–5096.  https://doi.org/10.1021/acscatal.5b00462 Google Scholar
  8. Bajracharya S, ter Heijne A, Dominguez Benetton X et al (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 195:14–24.  https://doi.org/10.1016/J.BIORTECH.2015.05.081 Google Scholar
  9. Bajracharya S, Sharma M, Mohanakrishna G et al (2016) An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy 98:153–170.  https://doi.org/10.1016/j.renene.2016.03.002 Google Scholar
  10. Bajracharya S, Srikanth S, Mohanakrishna G et al (2017a) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356:256–273.  https://doi.org/10.1016/j.jpowsour.2017.04.024 Google Scholar
  11. Bajracharya S, Yuliasni R, Vanbroekhoven K et al (2017b) Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry 113:26–34.  https://doi.org/10.1016/j.bioelechem.2016.09.001 Google Scholar
  12. Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573.  https://doi.org/10.1016/j.pecs.2007.11.001 Google Scholar
  13. Berk RS, Canfield JH (1964) Bioelectrochemical energy conversion. Appl Microbiol 12:10–12.  https://doi.org/10.1149/2.F01153if.About Google Scholar
  14. Biesemans M (2016) Biogas upgrading by means of simultaneous electrochemical CO2 removal and biomethanation. Dissertation, University of GentGoogle Scholar
  15. Blasco-Gómez R, Batlle-Vilanova P, Villano M et al (2017) On the edge of research and technological application: a critical review of electromethanogenesis. Int J Mol Sci 18:1–32.  https://doi.org/10.3390/ijms18040874 Google Scholar
  16. Bo T, Zhu X, Zhang L et al (2014) A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem Commun 45:67–70.  https://doi.org/10.1016/j.elecom.2014.05.026 Google Scholar
  17. Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741Google Scholar
  18. Butler CS, Clauwaert P, Green SJ et al (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol 44:4685–4691Google Scholar
  19. Cai W, Liu W, Yang C et al (2016) Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge. ACS Sustain Chem Eng 4:4913–4921.  https://doi.org/10.1021/acssuschemeng.6b01221 Google Scholar
  20. Call DF, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406.  https://doi.org/10.1021/es8001822 Google Scholar
  21. Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles. J Am Chem Soc 134:19969–19972.  https://doi.org/10.1021/ja309317u Google Scholar
  22. Chen S, Rotaru AE, Liu F et al (2014a) Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour Technol 173:82–86.  https://doi.org/10.1016/j.biortech.2014.09.009 Google Scholar
  23. Chen S, Rotaru AE, Shrestha PM et al (2014b) Promoting interspecies electron transfer with biochar. Sci Rep.  https://doi.org/10.1038/srep05019 Google Scholar
  24. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958Google Scholar
  25. Chi D, Yang H, Du Y et al (2014) Morphology-controlled CuO nanoparticles for electroreduction of CO to ethanol. RSC Adv 4:37329–37332Google Scholar
  26. Clauwaert P, Verstraete W (2008) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836.  https://doi.org/10.1007/s00253-008-1796-4 Google Scholar
  27. Clauwaert P, Rabaey K, Aelterman P et al (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360.  https://doi.org/10.1021/es062580r Google Scholar
  28. Clauwaert P, Aelterman P, Pham TH et al (2008a) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913.  https://doi.org/10.1007/s00253-008-1522-2 Google Scholar
  29. Clauwaert P, Tolêdo R, van der Ha D et al (2008b) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57:575–579.  https://doi.org/10.2166/wst.2008.084 Google Scholar
  30. Cusick RD, Logan BE (2012) Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol 107:110–115.  https://doi.org/10.1016/J.BIORTECH.2011.12.038 Google Scholar
  31. de Boer HS, Grond L, Moll H, Benders R (2014) The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy 72:360–370.  https://doi.org/10.1016/j.energy.2014.05.047 Google Scholar
  32. De Bok FAM, Luijten MLGC, Stams AJM (2002) Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl Environ Microbiol 68:4247–4252.  https://doi.org/10.1128/AEM.68.9.4247-4252.2002 Google Scholar
  33. De Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375.  https://doi.org/10.1016/j.watres.2003.11.028 Google Scholar
  34. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190.  https://doi.org/10.1007/s11157-008-9131-1 Google Scholar
  35. Dutta PK (2009) Electrochemical sulfide removal from wastewater: microbial interactions and process development. Dissertation, The University of QueenslandGoogle Scholar
  36. Dykstra CM, Pavlostathis SG (2017) Methanogenic biocathode microbial community development and the role of bacteria. Environ Sci Technol.  https://doi.org/10.1021/acs.est.6b04112 Google Scholar
  37. ElMekawy A, Hegab HM, Mohanakrishna G et al (2016) Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization. Bioresour Technol 215:357–370.  https://doi.org/10.1016/j.biortech.2016.03.023 Google Scholar
  38. EU Roadmap (2011) Mapping renewable energy pathways towards 2020. EREC. https://energi.di.dk/SiteCollectionDocuments/Mapping%20Renewable%20Energy%20Pathways%20towards%202020.pdf. Accessed 27 July 2017
  39. Fan M, Bai Z, Zhang Q et al (2014) Aqueous CO reduction on morphology controlled Cu O nanocatalysts at low overpotential. RSC Adv 84:44583–44591.  https://doi.org/10.1039/C6RA06956H Google Scholar
  40. Feng X, Jiang K, Fan S, Kanan MW (2015) Grain-boundary-dependent CO2 electroreduction activity. J Am Chem Soc 137:4606–4609.  https://doi.org/10.1021/ja5130513 Google Scholar
  41. Fu Q, Kuramochi Y, Fukushima N et al (2015) Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. Environ Sci Technol 49:1225–1232.  https://doi.org/10.1021/es5052233 Google Scholar
  42. Ganigue R, Puig S, Batlle-Vilanova P et al (2015) Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun 51:3235–3238.  https://doi.org/10.1039/C4CC10121A Google Scholar
  43. Gao Y, Sun D, Dang Y et al (2017) Enhancing biomethanogenic treatment of fresh incineration leachate using single chambered microbial electrolysis cells. Bioresour Technol 231:129–137.  https://doi.org/10.1016/J.BIORTECH.2017.02.024 Google Scholar
  44. Gonçalves MR, Gomes A, Condeço J et al (2013) Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochim Acta 102:388–392.  https://doi.org/10.1016/j.electacta.2013.04.015 Google Scholar
  45. Gorby YA, Yanina S, McLean JS et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:11358–11363.  https://doi.org/10.1073/pnas.0905246106 Google Scholar
  46. Götz M, Ortloff F, Bajohr S, Graf F (2011a) Speicherung von regenerativ erzeugter elektrischer Energie in der Erdgasinfrastruktur, gwf-Gas Erdgas. http://www.dvgw-innovation.de/fileadmin/dvgw/angebote/forschung/innovation/pdf/speicherung.pdf. Accessed 28 July 2017
  47. Götz M, Reimert R, Buchholz D, Bajohr S (2011b) Storage of volatile renewable energy in the gas grid applying 3-phase methanation. Int Gas Res Conf Proc 2:1283–1297Google Scholar
  48. Götz M, Lefebvre J, Mörs F et al (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390.  https://doi.org/10.1016/j.renene.2015.07.066 Google Scholar
  49. Graf F, Götz M, Bajohr S (2011) Injection of biogas, SNG and hydrogen into the gas grid: potential and limits. Eur J Gas Technol Distrib Appl 2:30–40Google Scholar
  50. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604.  https://doi.org/10.1111/j.1462-2920.2004.00593.x Google Scholar
  51. Guo K, Tang X, Du Z, Li H (2010) Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode. Biochem Eng J 51:48–52.  https://doi.org/10.1016/J.BEJ.2010.05.001 Google Scholar
  52. Guo K, Freguia S, Dennis PG et al (2013a) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol 47:7563–7570.  https://doi.org/10.1021/es400901u Google Scholar
  53. Guo X, Liu J, Xiao B (2013b) Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int J Hydrog Energy 38:1342–1347.  https://doi.org/10.1016/j.ijhydene.2012.11.087 Google Scholar
  54. Guo Z, Thangavel S, Wang L et al (2017) Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode: the effect of the cathode/anode ratio on bioenergy recovery. Energy Fuels 31:615–620.  https://doi.org/10.1021/acs.energyfuels.6b02375 Google Scholar
  55. Habermann W, Pommer EH (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35:128–133.  https://doi.org/10.1007/BF00180650 Google Scholar
  56. Hall AS, Yoon Y, Wuttig A, Surendranath Y (2015) Mesostructure-induced selectivity in CO2 reduction catalysis. J Am Chem Soc 137:14834–14837.  https://doi.org/10.1021/jacs.5b08259 Google Scholar
  57. Hashimoto K, Yamasaki M, Fujimura K et al (1999) Global CO2 recycling—novel materials and prospect for prevention of global warming and abundant energy supply. Mater Sci Eng A 267:200–206.  https://doi.org/10.1016/S0921-5093(99)00092-1 Google Scholar
  58. Hashimoto K, Kumagai N, Izumiya K et al (2014) The production of renewable energy in the form of methane using electrolytic hydrogen generation. Energy Sustain Soc 4:17.  https://doi.org/10.1186/s13705-014-0017-5 Google Scholar
  59. Hirano S, Matsumoto N, Morita M et al (2013) Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus. Lett Appl Microbiol 56:315–321.  https://doi.org/10.1111/lam.12059 Google Scholar
  60. Hoekman SK, Broch A, Robbins C, Purcell R (2010) CO2 recycling by reaction with renewably-generated hydrogen. Int J Greenh Gas Control 4:44–50.  https://doi.org/10.1016/j.ijggc.2009.09.012 Google Scholar
  61. Hongo M, Iwahara M (1979) Application of electro-energizing method to l-glutamic acid fermentation. Agric Biol Chem 43:2075–2081.  https://doi.org/10.1080/00021369.1979.10863776 Google Scholar
  62. Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178.  https://doi.org/10.1016/j.watres.2008.06.015 Google Scholar
  63. Januszewska A, Jurczakowski R, Kulesza PJ (2014) CO2 electroreduction at bare and cu-decorated pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au(111). Langmuir 30:14314–14321.  https://doi.org/10.1021/la5025247 Google Scholar
  64. Jentsch M, Trost T, Sterner M (2014) Optimal use of power-to-gas energy storage systems in an 85% renewable energy scenario. Energy Procedia 46:254–261.  https://doi.org/10.1016/j.egypro.2014.01.180 Google Scholar
  65. Jiang Y, Su M, Zhang Y et al (2013) Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int J Hydrog Energy 38:3497–3502.  https://doi.org/10.1016/j.ijhydene.2012.12.107 Google Scholar
  66. Jourdin L, Freguia S, Donose BC et al (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2:13093–13102.  https://doi.org/10.1039/C4TA03101F Google Scholar
  67. Jourdin L, Grieger T, Monetti J et al (2015) High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ Sci Technol 49:13566–13574.  https://doi.org/10.1021/acs.est.5b03821 Google Scholar
  68. Jourdin L, Freguia S, Flexer V, Keller J (2016) Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ Sci Technol 50:1982–1989.  https://doi.org/10.1021/acs.est.5b04431 Google Scholar
  69. Jourdin L, Raes SMT, Buisman CJN, Strik DPBTB (2018) Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Front Energy Res 6:1–15.  https://doi.org/10.3389/fenrg.2018.00007 Google Scholar
  70. Kalathil S, Pant D (2016) Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems. RSC Adv 6:30582–30597.  https://doi.org/10.1039/C6RA04734C Google Scholar
  71. Kalathil S, Nguyen VH, Shim J-J et al (2013) Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J Nanosci Nanotechnol 13:7712–7716Google Scholar
  72. Kauffman DR, Alfonso D, Matranga C et al (2012) Experimental and computational investigation of Au 25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J Am Chem Soc 134:10237–10243.  https://doi.org/10.1021/ja303259q Google Scholar
  73. Kim BH, Park HS, Kim HJ et al (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63:672–681.  https://doi.org/10.1007/s00253-003-1412-6 Google Scholar
  74. Kim D, Resasco J, Yu Y et al (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat Commun 5:4948.  https://doi.org/10.1038/ncomms5948 Google Scholar
  75. Koh JH, Jeon HS, Jee MS et al (2015) Oxygen plasma induced hierarchically structured gold electrocatalyst for selective reduction of carbon dioxide to carbon monoxide. J Phys Chem C 119:883–889.  https://doi.org/10.1021/jp509967m Google Scholar
  76. Lates V, Falch A, Jordaan A et al (2014) An electrochemical study of carbon dioxide electroreduction on gold-based nanoparticle catalysts. Electrochim Acta 128:75–84.  https://doi.org/10.1016/j.electacta.2013.10.162 Google Scholar
  77. Lee H-S, Rittmann BE (2010) Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. Int J Hydrog Energy 35:920–927.  https://doi.org/10.1016/J.IJHYDENE.2009.11.040 Google Scholar
  78. Li CW, Ciston J, Kanan MW (2014) Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508:504–507.  https://doi.org/10.1038/nature13249 Google Scholar
  79. Lim RJ, Xie M, Sk MA et al (2014) A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today 233:169–180.  https://doi.org/10.1016/j.cattod.2013.11.037 Google Scholar
  80. Lin H, Williams N, King A, Hu B (2016) Electrochemical sulfide removal by low-cost electrode materials in anaerobic digestion. Chem Eng J 297:180–192.  https://doi.org/10.1016/j.cej.2016.03.086 Google Scholar
  81. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285.  https://doi.org/10.1021/es034923g Google Scholar
  82. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662.  https://doi.org/10.1021/es048927c Google Scholar
  83. Liu F, Rotaru A-E, Shrestha PM et al (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989.  https://doi.org/10.1039/c3ee24393a Google Scholar
  84. Liu XW, Huang YX, Sun XF et al (2014) Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Appl Mater Interfaces 6:8158–8164.  https://doi.org/10.1021/am500624k Google Scholar
  85. Liu F, Rotaru AE, Shrestha PM et al (2015) Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ Microbiol 17:648–655.  https://doi.org/10.1111/1462-2920.12485 Google Scholar
  86. Liu W, Cai W, Guo Z et al (2016) Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production. Renew Energy 91:334–339.  https://doi.org/10.1016/j.renene.2016.01.082 Google Scholar
  87. Lohner ST, Deutzmann JS, Logan BE et al (2014) Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J 8:1673–1681.  https://doi.org/10.1038/ismej.2014.82 Google Scholar
  88. Lovley DR, Ueki T, Zhang T et al (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. In: Poole RK (ed) Advances in microbial physiology. Academic Press, Cambridge, pp 1–100Google Scholar
  89. Luo X, Zhang F, Liu J et al (2014) Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions. Environ Sci Technol 48:8911–8918.  https://doi.org/10.1021/es501979z Google Scholar
  90. Ma M, Djanashvili K, Smith WA (2015) Selective electrochemical reduction of CO to CO on CuO-derived Cu nanowires. Phys Chem Chem Phys 17:20861–20867.  https://doi.org/10.1038/nmeth.1897 Google Scholar
  91. Malvankar NS, Vargas M, Nevin KP et al (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579.  https://doi.org/10.1038/nnano.2011.119 Google Scholar
  92. Manthiram K, Surendranath Y, Alivisatos AP (2014) Dendritic assembly of gold nanoparticles during fuel-forming electrocatalysis. J Am Chem Soc 136:7237–7240.  https://doi.org/10.1021/ja502628r Google Scholar
  93. Marshall CW, Ross DE, Fichot EB et al (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47:6023–6029.  https://doi.org/10.1021/es400341b Google Scholar
  94. Marsili E, Baron DB, Shikhare ID et al (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105:3968–3973.  https://doi.org/10.1073/pnas.0710525105 Google Scholar
  95. Mistry H, Reske R, Zeng Z et al (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136:16473–16476.  https://doi.org/10.1021/ja508879j Google Scholar
  96. Mohseni F, Görling M, Llindén M, Larsson M (2017) Genomförbarhetsstudie för power to gas på gotland. Energiforsk. https://www.swedegas.se/-/media/Files/Presentationsmaterial/genomforandestudie-for-power-to-gas-pa-gotlandenergiforskrapport.ashx?la=sv-SE. Accessed 14 March 2018
  97. Monzó J, Malewski Y, Kortlever R et al (2013) Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. J Mater Chem A 47:23690–23698.  https://doi.org/10.1039/c3ta01673k Google Scholar
  98. Moreno R, San-Martín MI, Escapa A, Morán A (2016) Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell. Renew Energy 93:442–448.  https://doi.org/10.1016/J.RENENE.2016.02.083 Google Scholar
  99. Morita M, Malvankar NS, Franks AE et al (2011) Potential for direct interspecies electron transfer in methanogenic. MBio 2:e00159-11.  https://doi.org/10.1128/mBio.00159-11.Editor Google Scholar
  100. Morozov SV, Vignais PM, Cournac L et al (2002) Bioelectrocatalytic hydrogen production by hydrogenase electrodes. Int J Hydrog Energy 27:1501–1505.  https://doi.org/10.1016/S0360-3199(02)00091-5 Google Scholar
  101. Mueller JR (2012) Microbial catalysis of methane from carbon dioxide. Dissertation, The Ohio State UniversityGoogle Scholar
  102. Nevin KP, Lovley DR (2000) Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ Sci Technol 34:2472–2478.  https://doi.org/10.1021/es991181b Google Scholar
  103. Nevin KP, Woodard TL, Franks AE (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic. Am Soc Microbiol 1:1–4.  https://doi.org/10.1128/mBio.00103-10.Editor Google Scholar
  104. Nie H, Zhang T, Cui M et al (2013) Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys Chem Chem Phys 15:14290–14294.  https://doi.org/10.1039/C3CP52697F Google Scholar
  105. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292–1297.  https://doi.org/10.1128/AEM.66.4.1292-1297.2000.Updated Google Scholar
  106. Park IH, Christy M, Kim P, Nahm KS (2014) Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosens Bioelectron 58:75–80.  https://doi.org/10.1016/J.BIOS.2014.02.044 Google Scholar
  107. Patil SA, Arends JBA, Vanwonterghem I et al (2015) Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ Sci Technol 49:8833–8843.  https://doi.org/10.1021/es506149d Google Scholar
  108. Peguin S, Goma G, Delorme P, Soucaille P (1994) Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition. Appl Microbiol Biotechnol 42:611–616.  https://doi.org/10.1007/BF00173928 Google Scholar
  109. Pershad HR, Duff JLC, Heering HA et al (1999) Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry 38:8992–8999.  https://doi.org/10.1021/bi990108v Google Scholar
  110. Peterson AA, Abild-pedersen F, Studt F et al (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315.  https://doi.org/10.1039/C0EE00071JE Google Scholar
  111. Pikaar I, Likosova EM, Freguia S et al (2014) Electrochemical abatement of hydrogen sulfide from waste streams. Crit Rev Environ Sci Technol.  https://doi.org/10.1080/10643389.2014.966419 Google Scholar
  112. Pleßmann G, Erdmann M, Hlusiak M, Breyer C (2014) Global energy storage demand for a 100% renewable electricity supply. Energy Procedia 46:22–31.  https://doi.org/10.1016/j.egypro.2014.01.154 Google Scholar
  113. Qiao J, Jiang P, Liu J, Zhang J (2014) Formation of Cu nanostructured electrode surfaces by an annealing-electroreduction procedure to achieve high-efficiency CO2 electroreduction. Electrochem Commun 38:8–11.  https://doi.org/10.1016/j.elecom.2013.10.023 Google Scholar
  114. Quan F, Zhong D, Song H et al (2015) A highly efficient zinc catalyst for selective electroreduction of carbon dioxide in aqueous NaCl solution. J Mater Chem A 32:16409–16413.  https://doi.org/10.1039/c3ta11219e Google Scholar
  115. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716.  https://doi.org/10.1038/nrmicro2422 Google Scholar
  116. Rabaey K, Boon N, Siciliano SD et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382.  https://doi.org/10.1128/AEM.70.9.5373 Google Scholar
  117. Rabaey K, Boon N, Höfte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408.  https://doi.org/10.1021/es048563o Google Scholar
  118. Raciti D, Livi KJ, Wang C (2015) Highly dense Cu Nanowires for low-overpotential CO2 reduction. Nano Lett 15:6829–6835.  https://doi.org/10.1021/acs.nanolett.5b03298 Google Scholar
  119. Reguera G, McCarthy KD, Mehta T et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101.  https://doi.org/10.1038/nature03661 Google Scholar
  120. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671.  https://doi.org/10.1021/es048386r Google Scholar
  121. Rismani-Yazdi H, Christy AD, Dehority BA et al (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97:1398–1407.  https://doi.org/10.1002/bit Google Scholar
  122. Rivera I, Bakonyi P, Cuautle-Marín MA, Buitrón G (2017) Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production. Chemosphere 174:253–259.  https://doi.org/10.1016/J.CHEMOSPHERE.2017.01.128 Google Scholar
  123. Rotaru A-E, Shrestha PM, Liu F et al (2014a) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605.  https://doi.org/10.1128/AEM.00895-14 Google Scholar
  124. Rotaru A-E, Shrestha PM, Liu F et al (2014b) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415.  https://doi.org/10.1039/C3EE42189A Google Scholar
  125. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008a) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634.  https://doi.org/10.1021/es071720 Google Scholar
  126. Rozendal RA, Hamelers HVM, Rabaey K et al (2008b) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459.  https://doi.org/10.1016/j.tibtech.2008.04.008 Google Scholar
  127. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755.  https://doi.org/10.1016/j.elecom.2009.07.008 Google Scholar
  128. Sakakibara Y, Kuroda M (1993) Electric prompting and control of denitrification. Biotechnol Bioeng 42:535–537.  https://doi.org/10.1021/ja01858a067 Google Scholar
  129. Schröder U, Nießen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chemie—Int Ed 42:2880–2883.  https://doi.org/10.1002/anie.200350918 Google Scholar
  130. Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4:3091–3095.  https://doi.org/10.1021/cs500522g Google Scholar
  131. Shrestha PM, Malvankar NS, Werner JJ et al (2014) Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Bioresour Technol 174:306–310.  https://doi.org/10.1016/j.biortech.2014.10.004 Google Scholar
  132. Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452.  https://doi.org/10.1146/annurev-micro-090110-102844 Google Scholar
  133. Siegert M, Li XF, Yates MD, Logan BE (2014a) The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells. Front Microbiol 5:1–12.  https://doi.org/10.3389/fmicb.2014.00778 Google Scholar
  134. Siegert M, Yates MD, Call DF et al (2014b) Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustain Chem Eng 2:910–917.  https://doi.org/10.1021/sc400520x Google Scholar
  135. Specht M, Brellochs J, Frick V et al (2010) Speicherung von bioenergier und erneuerbarem strom im erdgasnetz. Erdoel Erdgas Kohle 126:342–345Google Scholar
  136. SSB (2017a) Electricity statistics Norway. Statistisk sentralbyrå. https://www.ssb.no/en/energi-og-industri/statistikker/elektrisitet/aar. Accessed 18 July 2017
  137. SSB (2017b) Production and consumption of energy, energy account see more tables on this subject. Statistisk sentralbyrå. https://www.ssb.no/en/energi-og-industri/statistikker/indenergi. Accessed 18 July 2017
  138. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577.  https://doi.org/10.1038/nrmicro2166 Google Scholar
  139. Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems. Renew Energy Energy Effic 14:230Google Scholar
  140. Stombaugh NA, Sundquist JE, Burris RH, Orme-Johnson WH (1976) Oxidation-reduction properties of several low potential iron–sulfur proteins and of methylviologen. Biochemistry 15:2633–2641.  https://doi.org/10.1021/bi00657a024 Google Scholar
  141. Straub KL, Straub KL, Schink B, Schink B (2004) Ferrihydrite-dependent growth of sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl Environ Microbiol 70:5744–5749.  https://doi.org/10.1128/AEM.70.10.5744 Google Scholar
  142. Strycharz SM, Woodard TL, Johnson JP et al (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74:5943–5947.  https://doi.org/10.1128/AEM.00961-08 Google Scholar
  143. Sugnaux M, Happe M, Cachelin CP et al (2017) Cathode deposits favor methane generation in microbial electrolysis cell. Chem Eng J 324:228–236.  https://doi.org/10.1016/J.CEJ.2017.05.028 Google Scholar
  144. Tender LM, Reimers CE, Stecher HA et al (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825.  https://doi.org/10.1038/nbt716 Google Scholar
  145. ter Heijne A, Hamelers HVM, Buisman CJN (2007) Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ Sci Technol 41:4130–4134.  https://doi.org/10.1021/es0702824 Google Scholar
  146. Thrash JC, Van Trump JI, Weber KA et al (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746.  https://doi.org/10.1021/es062772m Google Scholar
  147. Torres CI, Marcus AK, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioeng 100:872–881.  https://doi.org/10.1002/bit.21821 Google Scholar
  148. Uhm S, Kim YD (2014) Electrochemical conversion of carbon dioxide in a solid oxide electrolysis cell. Curr Appl Phys 14:672–679.  https://doi.org/10.1016/j.cap.2014.02.013 Google Scholar
  149. Union Gas (2011) Chemical composition of natural gas. Union Gas. https://www.uniongas.com/about-us/about-natural-gas/Chemical-Composition-of-Natural-Gas. Accessed 25 July 2017
  150. United States. Dept. of Energy (2004) Basic research needs for the hydrogen economy. In: Report of the basic energy sciences workshop on hydrogen production, storage and use, 13–15 May 2003. Basic Res Needs Hydrog Econ 178.  https://doi.org/10.2172/899224
  151. van Eerten-Jansen MCAA, Jansen NC, Plugge CM et al (2015) Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. J Chem Technol Biotechnol 90:963–970.  https://doi.org/10.1002/jctb.4413 Google Scholar
  152. Van Eerten-Jansen MCAA, Ter Heijne A, Buisman CJN, Hamelers HVM (2012) Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int J Energy Res 36:809–819.  https://doi.org/10.1002/er.1954 Google Scholar
  153. Verdaguer-Casadevall A, Li CW, Johansson TP et al (2015) Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc 137:9808–9811.  https://doi.org/10.1021/jacs.5b06227 Google Scholar
  154. Villano M, Aulenta F, Ciucci C et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090.  https://doi.org/10.1016/j.biortech.2009.12.077 Google Scholar
  155. Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196:9467–9472.  https://doi.org/10.1016/j.jpowsour.2011.07.016 Google Scholar
  156. Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024.  https://doi.org/10.1016/j.watres.2008.03.017 Google Scholar
  157. Von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623.  https://doi.org/10.1128/AEM.01387-07 Google Scholar
  158. Wang A, Liu W, Cheng S et al (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrog Energy 34:3653–3658.  https://doi.org/10.1016/j.ijhydene.2009.03.005 Google Scholar
  159. Wang Z-L, Li C, Yamauchi Y (2016) Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 11:373–391.  https://doi.org/10.1016/j.nantod.2016.05.007 Google Scholar
  160. Wimalasena TT, Greetham D, Marvin ME et al (2014) Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microb Cell Fact 13:47.  https://doi.org/10.1186/1475-2859-13-47 Google Scholar
  161. Wu J, Ma S, Sun J et al (2016) A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat Commun 7:1–6.  https://doi.org/10.1038/ncomms13869 Google Scholar
  162. Xiao B, Chen X, Han Y et al (2018) Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells. Renew Energy 115:1177–1183.  https://doi.org/10.1016/J.RENENE.2017.06.043 Google Scholar
  163. Xie X, Hu L, Pasta M et al (2011) Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett 11:291–296.  https://doi.org/10.1021/nl103905t Google Scholar
  164. Xie X, Zhao W, Lee HR et al (2014) Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: crinkling of carbon nanotube films to create subcellular ridges. ACS Nano 8:11958–11965.  https://doi.org/10.1021/nn504898p Google Scholar
  165. Xu H, Wang K, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresour Technol 173:392–398.  https://doi.org/10.1016/j.biortech.2014.09.127 Google Scholar
  166. Yates MD, Ma L, Sack J et al (2017) Microbial electrochemical energy storage and recovery in a combined electrotrophic and electrogenic biofilm. Environ Sci Lett.  https://doi.org/10.1021/acs.estlett.7b00335 Google Scholar
  167. Yin Q, Zhu X, Zhan G et al (2016) Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina. J Environ Sci (China) 42:210–214.  https://doi.org/10.1016/j.jes.2015.07.006 Google Scholar
  168. Zhan Z, Zhao L (2010) Electrochemical reduction of CO2 in solid oxide electrolysis cells. J Power Sources 195:7250–7254.  https://doi.org/10.1016/j.jpowsour.2010.05.037 Google Scholar
  169. Zhang T, Nie H, Bain TS et al (2013) Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 6:217–224.  https://doi.org/10.1039/C2EE23350A Google Scholar
  170. Zhang L, Hu S, Zhu X, Yang W (2017) Electrochemical reduction of CO2 in solid oxide electrolysis cells. J Energy Chem 13:1–9.  https://doi.org/10.1016/j.jechem.2017.04.004 Google Scholar
  171. Zhao Z, Zhang Y, Chen S et al (2014) Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor. Sci Rep 4:6658.  https://doi.org/10.1038/srep06658 Google Scholar
  172. Zhao Z, Zhang Y, Wang L, Quan X (2015a) Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Sci Rep 5:11094.  https://doi.org/10.1038/srep11094 Google Scholar
  173. Zhao Z, Zhang Y, Woodard TL et al (2015b) Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour Technol 191:140–145.  https://doi.org/10.1016/j.biortech.2015.05.007 Google Scholar
  174. Zhao Z, Zhang Y, Li Y et al (2016) Electrochemical reduction of carbon dioxide to formate with Fe–C electrodes in anaerobic sludge digestion process. Water Res 106:339–343.  https://doi.org/10.1016/j.watres.2016.10.018 Google Scholar
  175. Zhao Z, Zhang Y, Li Y et al (2017) Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem Eng J 313:10–18.  https://doi.org/10.1016/j.cej.2016.11.149 Google Scholar
  176. Zhu W, Michalsky R, Metin Ö et al (2013) Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc 135:16833–16836.  https://doi.org/10.1021/ja409445p Google Scholar
  177. Zhu W, Zhang YJ, Zhang H et al (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136:16132–16135.  https://doi.org/10.1021/ja5095099 Google Scholar
  178. Zinder SH, Anguish T, Cardwell SC (1984) Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl Environ Microbiol 47:1343–1345Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Anirudh Bhanu Teja Nelabhotla
    • 1
  • Carlos Dinamarca
    • 1
  1. 1.Faculty of Technology, Natural Sciences and Maritime SciencesUniversity of South-Eastern NorwayPorsgrunnNorway

Personalised recommendations