Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review

  • Min Guo
  • Yinguang ChenEmail author
review paper


Cobalamin is a unique metal complex coenzyme that contains the cobalt ion sitting in the centre of a planar tetrapyrrole ring (corrin ring). It is unique that its de novo synthesis appears to be restricted solely to some bacteria and archaea, and the biosynthesis of cobalamin represents the most complex biosynthetic pathways known in nature. Despite the fact that only a subset of prokaryotes is capable of synthesizing cobalamin, which is required by humans and other organisms for diverse metabolic processes. This active metal coenzyme plays an essential role as electron transfer mediator in reductive dechlorination of chlorinated organics. Therefore, the application of such biomimetic chemical in engineered treatment systems for remediation of water and soil contaminated with halogenated compounds has shown excellent significance. This review aims to provide a systematic introduction of cobalamin. Firstly, the biosynthesis of cobalamin is briefly described, and the strategies and tools that have been applied to increase microbial cobalamin production are reviewed. Then, the catalysis effect of cobalamin on reductive dehalogenation and the main decisive factors are discussed in detail. Also, the fundamental dehalogenation mechanisms are introduced. Finally, the key questions that need to be resolved in the future are point out, which include the field measurements, the mechanistic pathways of the reactions in the presence of more than one pollutants, the design and implementation of a technology that speeds up the cleavage of Co–C bond in reductant systems to guarantee the rapid regeneration of the reactive cobalamin species, and the lab-scale application of immobilized cobalamin rather than insoluble cobalamin.

Graphical Abstract


Cobalamin Biosynthesis Overproduction Dehalogenation Electron mediator Mechanism 











Carbon tetrachloride














Vinyl chloride




Zero valent metal


Polychlorinated biphenyl






Tetrabromobisphenol A


Chlorinated aliphatic hydrocarbons




Standard reduction potentials (versus SHE and at pH 7)



This work was financially supported by the National Science Foundation of China (51425802), and the Program of Shanghai Subject Chief Scientist (15XD1503400).


  1. Amir A, Lee W (2011) Enhanced reductive dechlorination of tetrachloroethene by nano-sized zero valent iron with vitamin B12. Chem Eng J 170(2–3):492–497CrossRefGoogle Scholar
  2. Amir A, Lee W (2012) Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin(III) by nano-mackinawite. J Hazard Mater 235–236:359–366CrossRefGoogle Scholar
  3. Assaf-Anid N, Lin KY (2002) Carbon tetrachloride reduction by Fe2+, S2−, and FeS with vitamin B12 as organic amendment. J Environ Eng 128(1):94–99CrossRefGoogle Scholar
  4. Assaf-Anid N, Nies L, Vogel TM (1992) Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12. Appl Environ Microbiol 58(3):1057–1060Google Scholar
  5. Assaf-Anid N, Hayes KF, Vogel TM (1994) Reduction dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol: mechanistic study, effect of redox potential and pH. Environ Sci Technol 28(2):246–252CrossRefGoogle Scholar
  6. Becker JG, Freedman DL (1994) Use of cyanocobalamin to enhance anaerobic biodegradation of chloroform. Environ Sci Technol 28(11):1942–1949CrossRefGoogle Scholar
  7. Biedendieck R, Malten M, Barg H, Bunk B, Martens JH, Deery E, Leech H, Warren MJ, Jahn D (2010) Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microb Biotechnol 3(1):24–37CrossRefGoogle Scholar
  8. Blanche F, Thibaut D, Debussche L, Hertle R, Zipfel F, Muller G (1993) Parallels and decisive differences in vitamin-B12 biosyntheses. Angew Chem Int Ed 32(11):1651–1653CrossRefGoogle Scholar
  9. Blanche F, Cameron B, Crouzet J, Debussche L, Thibaut D, Vuilhorgne M, Leeper FJ, Battersby AR (1995) Vitamin B12: how the problem of its biosynthesis was solved. Angew Chem Int Ed 34(4):383–411CrossRefGoogle Scholar
  10. Blaser HU, Halpern J (1980) Reactions of vitamin B12r with organic halides. J Am Chem Soc 102(5):1684–1689CrossRefGoogle Scholar
  11. Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, Campbell K (2009) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23CrossRefGoogle Scholar
  12. Bosma TNP, Cottaar FHM, Posthumus MA, Teunis CJ, Vanveldhulzen A, Schraa G, Zehnder AJB (1994) Comparison of reductive dechlorination of hexachloro-1,3-butadiene in rhine sediment and model systems with hydroxocobalamin. Environ Sci Technol 28(6):1124–1128CrossRefGoogle Scholar
  13. Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: An overview. Int J Food Microbiol 133(1–2):1–7CrossRefGoogle Scholar
  14. Burris DR, Delcomyn CA, Smith MH, Roberts AL (1996) Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems. Environ Sci Technol 30(10):3047–3052CrossRefGoogle Scholar
  15. Bykhovsky VY, Zaitseva NI, Eliseev AA (1998) Tetrapyrroles: diversity, biosynthesis, and biotechnology (review). Appl Biochem Microbiol 34(1):1–18Google Scholar
  16. Cheng X, Chen Peng WF, Li KT (2014) Improved vitamin B12 fermentation process by adding rotenone to regulate the metabolism of Pseudomonas denitrificans. Appl Biochem Biotechnol 173(3):673–681CrossRefGoogle Scholar
  17. Chiliveri SR, Yeruva T, Panda SH, Linga VR (2010) Optimization of fermentation parameters for vitamin B12 production using Propionibacterium freudertreichii sub sp. shermanii OLP-5 by Taguchi method. J Pure Appl Microbiol 4(2):647–658Google Scholar
  18. Chiu PC, Reinhard M (1995) Metallocoenzyme-mediated reductive transformation of carbon tetrachloride in titanium(III) citrate aqueous solution. Environ Sci Technol 29(3):595–603CrossRefGoogle Scholar
  19. Chiu PC, Reinhard M (1996) Transformation of carbon tetrachloride by reduced vitamin B12 in aqueous cysteine solution. Environ Sci Technol 30(6):1882–1889CrossRefGoogle Scholar
  20. Dai R, Chen X, Ma C, Xiang X, Li G (2016) Insoluble/immobilized redox mediators for catalyzing anaerobic bio-reduction of contaminants. Rev Environ Sci Biotechnol 15(3):379–409CrossRefGoogle Scholar
  21. Demain AL, Daniels HJ, Schnable L, White RF (1968) Specificity of the stimulatory effect of betaine on the vitamin B12 fermentation. Nature 220(5174):1324–1325CrossRefGoogle Scholar
  22. Dror I, Baram D, Berkowitz B (2005) Use of nanosized catalysts for transformation of chloro-organic pollutants. Environ Sci Technol 39(5):1283–1290CrossRefGoogle Scholar
  23. Dror I, Jacov OM, Cortis A, Berkowitz B (2012) Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron. ACS Appl Mater Interfaces 4(7):3416–3423CrossRefGoogle Scholar
  24. Eschenmoser A (1974) Organische Naturstoffsynthese heute Vitamin B12 als Beispiel. Sci Nat 61(12):513–525CrossRefGoogle Scholar
  25. Fang H, Kang J, Zhang D (2017) Microbial production of vitamin B12: a review and future perspectives. Microb Cell Fact 16(1):15CrossRefGoogle Scholar
  26. Fowler CC, Brown ED, Li Y (2008) A FACS-based approach to engineering artificial riboswitches. ChemBioChem 9(12):1906–1911CrossRefGoogle Scholar
  27. Gantzer CJ, Wackett LP (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25(4):715–722CrossRefGoogle Scholar
  28. Glod G, Angst W, Holliger C, Schwarzenbach RP (1997a) Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: reaction kinetics and reaction mechanisms. Environ Sci Technol 31(1):253–260CrossRefGoogle Scholar
  29. Glod G, Brodmann U, Angst W, Holliger C, Schwarzenbach RP (1997b) Cobalamin-mediated reduction of cis- and trans-dichloroethene, 1,1-dichloroethene, and vinyl chloride in homogeneous aqueous solution: reaction kinetics and mechanistic considerations. Environ Sci Technol 31(11):3154–3160CrossRefGoogle Scholar
  30. Guerrero-Barajas C, Field JA (2005a) Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins. Biodegradation 16(3):215–228CrossRefGoogle Scholar
  31. Guerrero-Barajas C, Field JA (2005b) Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 89(5):539–550CrossRefGoogle Scholar
  32. Guerrero-Barajas C, Field JA (2006) Enhanced anaerobic biotransformation of carbon tetrachloride with precursors of vitamin B-12 biosynthesis. Biodegradation 17(4):317–329CrossRefGoogle Scholar
  33. Gulati S, Brody LC, Banerjee R (1999) Posttranscriptional regulation of mammalian methionine synthase by B12. Biochem Biophys Res Commun 259(2):436–442CrossRefGoogle Scholar
  34. Habeck BD, Sublette KL (1995) Reductive dechlorination of tetrachloroethylene (PCE) catalyzed by cyanocobalamin. Appl Biochem Biotechnol 51(1):747–759CrossRefGoogle Scholar
  35. Hajfarajollah H, Mokhtarani B, Mortaheb H, Afaghi A (2014) Vitamin B12 biosynthesis over waste frying sunflower oil as a cost effective and renewable substrate. J Food Sci Technol 52:3273–3282Google Scholar
  36. Hashsham SA, Freedman DL (1999) Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose. Appl Environ Microbiol 65(10):4537–4542Google Scholar
  37. Hashsham SA, Scholze R, Freedman DL (1995) Cobalamin-enhanced anaerobic biotransformation of carbon-tetrachloride. Environ Sci Technol 29(11):2856–2863CrossRefGoogle Scholar
  38. Hazra AB, Han AW, Mehta AP, Mok KC, Osadchiy V, Begley TP, Taga ME (2015) Anaerobic biosynthesis of the lower ligand of vitamin B12. Proc of the Natl Acad Sci USA 112(34):10792–10797CrossRefGoogle Scholar
  39. Huang CC, Lo SL, Lien HL (2013) Synergistic effect of zero-valent copper nanoparticles on dichloromethane degradation by vitamin B12 under reducing condition. Chem Eng J 219:311–318CrossRefGoogle Scholar
  40. Huang CC, Lo SL, Lien HL (2015) Vitamin B12-mediated hydrodechlorination of dichloromethane by bimetallic Cu/Al particles. Chem Eng J 273:413–420CrossRefGoogle Scholar
  41. Jacobsen DW, Troxell LS, Brown KL (1984) Catalysis of thiol oxidation by cobalamins and cobinamides: reaction-products and kinetics. Biochemistry 23(9):2017–2025CrossRefGoogle Scholar
  42. Jacobsen DW, Pezacka EH, Brown KL (1993) The inhibition of corrinoid-catalyzed oxidation of mercaptoethanol by methyl-iodide: mechanistic implications. J Inorg Biochem 50(1):47–63CrossRefGoogle Scholar
  43. James DL, Cord-Ruwisch R, Schleheck D, Lee MJ, Manefield M (2008) Cyanocobalamin enables activated sludge bacteria to dechlorinate hexachloro-1,3-butadiene to nonchlorinated gases. Bioremediat J 12(4):177–184CrossRefGoogle Scholar
  44. Jeter RM, Olivera BM, Roth JR (1984) Salmonella-typhimurium synthesizes cobalamin (vitamin-B12) denovo under anaerobic growth-conditions. J Bacteriol 159(1):206–213Google Scholar
  45. Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of delta-aminolevulinic acid and vitamin B12. Biotechnol Adv 30(6):1533–1542CrossRefGoogle Scholar
  46. Kang J, Fang H, Dong H, Song W, Zhang D (2017) Purification and characterization of S-adenosyl-l-methionine: uroporphyrinogen III methyltransferase from Rhodobacter capsulatus SB1003. Chin J Biotechnol 33(1):55–67Google Scholar
  47. Kannangara CG, Gough SP, Bruyant P, Hoober JK, Kahn A, Vonwettstein D (1988) Transfer rna-glu as a cofactor in delta-aminolevulinate biosynthesis—steps that regulate chlorophyll synthesis. Trends Biochem Sci 13(4):139–143CrossRefGoogle Scholar
  48. Kiatpapan P, Murooka Y (2002) Genetic manipulation system in propionibacteria. J Biosci Bioeng 93(1):1–8CrossRefGoogle Scholar
  49. Kiatpapan P, Hashimoto Y, Nakamura H, Piao YZ, Ono H, Yamashita M, Murooka Y (2000) Characterization of pRGO1, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria. Appl Environ Microbiol 66(11):4688–4695CrossRefGoogle Scholar
  50. Kiatpapan P, Yamashita M, Kawaraichi N, Yasuda T, Murooka Y (2001) Heterologous expression of a gene encoding cholesterol oxidase in probiotic strains of Lactobacillus plantarum and Propionibacterium freudenreichii under the control of native promoters. J Biosci Bioeng 92(5):459–465CrossRefGoogle Scholar
  51. Kim YH, Carraway ER (2002) Reductive dechlorination of PCE and TCE by vitamin B12 and ZVMs. Environ Technol 23(10):1135–1145CrossRefGoogle Scholar
  52. Kim S, Park T, Lee W (2015) Enhanced reductive dechlorination of tetrachloroethene by nano-sized mackinawite with cyanocobalamin in a highly alkaline condition. J Environ Manag 151:378–385CrossRefGoogle Scholar
  53. Kliegman S, McNeill K (2008) Dechlorination of chloroethylenes by cob(I)alamin and cobalamin model complexes. Dalton Trans 32:4191–4201CrossRefGoogle Scholar
  54. Ko Y, Ashok S, Ainala SK, Sankaranarayanan M, Chun AY, Jung GY, Park S (2014) Coenzyme B-12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol J 9(12):1526–1535CrossRefGoogle Scholar
  55. Koenig J, Lee M, Manefield M (2014) Aliphatic organochlorine degradation in subsurface environments. Rev Environ Sci Biotechnol 14(1):49–71CrossRefGoogle Scholar
  56. Kosmider A, Bialas W, Kubiak P, Drozdzynska A, Czaczyk K (2012) Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresource Technol 105:128–133CrossRefGoogle Scholar
  57. Krone UE, Thauer RK, Hogenkamp HP (1989) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28(11):4908–4914CrossRefGoogle Scholar
  58. Kyung D, Amir A, Choi K, Lee W (2015) Reductive transformation of tetrachloroethene catalyzed by sulfide-cobalamin in nano-mackinawite suspension. Ind Eng Chem Res 54(5):1439–1446CrossRefGoogle Scholar
  59. Lee W, Batchelor B (2002) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36(23):5147–5154CrossRefGoogle Scholar
  60. Lesage S, Brown S, Millar K (1996) Vitamin B-12-catalyzed dechlorination of perchloroethylene present as residual DNAPL. Groundw Monit Remediat 16(4):76–85CrossRefGoogle Scholar
  61. Lewis TA, Morra MJ, Brown PD (1995) Comparative product analysis of carbon tetrachloride dehalogenation catalyzed by cobalt corrins in the presence of thiol or titanium(III) reducing agents. Environ Sci Technol 30(1):292–300CrossRefGoogle Scholar
  62. Lewis TA, Morra MJ, Brown PD (1996) Comparative product analysis of carbon tetrachloride dehalogenation catalyzed by cobalt corrins in the presence of thiol or titanium(III) reducing agents. Environ Sci Technol 30(1):292–300CrossRefGoogle Scholar
  63. Lexa D, Saveant JM (1983) The electrochemistry of vitamin-B12. Acc Chem Res 16(7):235–243CrossRefGoogle Scholar
  64. Li KT, Liu DH, Zhuang YP, Wang YH, Chu J, Zhang SL (2008a) Influence of Zn2+, Co2+ and dimethylbenzimidazole on vitamin B12 biosynthesis by Pseudomonas denitrificans. World J Microbiol Biotechnol 24(11):2525–2530CrossRefGoogle Scholar
  65. Li KT, Liu DH, Chu J, Wang YH, Zhuang YP, Zhang SL (2008b) An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioproc Biosyst Eng 31(6):605–610CrossRefGoogle Scholar
  66. Li KT, Liu DH, Li YL, Chu J, Wang YH, Zhuang YP, Zhang SL (2008c) Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresource Technol 99(17):8516–8520CrossRefGoogle Scholar
  67. Li KT, Zhou J, Cheng X, Sj Wei (2012) Study on the dissolved oxygen control strategy in large-scale vitamin B12 fermentation by Pseudomonas denitrificans. J Chem Technol Biotechnol 87(12):1648–1653CrossRefGoogle Scholar
  68. Marks TS, Maule A (1992) The use of immobilized porphyrins and corrins to dehalogenate organochlorine pollutants. Appl Microbiol Biotechnol 38(3):413–416CrossRefGoogle Scholar
  69. Marks TS, Allpress JD, Maule A (1989) Dehalogenation of lindane by a variety of porphyrins and corrins. Appl Environ Microbiol 55(5):1258–1261Google Scholar
  70. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285CrossRefGoogle Scholar
  71. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56(3):482–507Google Scholar
  72. Moore SJ, Warren MJ (2012) The anaerobic biosynthesis of vitamin B12. Biochem Soc Trans 40(3):581–586CrossRefGoogle Scholar
  73. Moore SJ, Mayer MJ, Biedendieck R, Deery E, Warren MJ (2014) Towards a cell factory for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch control elements. New Biotechnol 31(6):553–561CrossRefGoogle Scholar
  74. Murooka Y, Ishizaki T, Nimi O, Maekawa N (1986) Cloning and expression of a streptomyces cholesterol oxidase gene in streptomyces-lividans with plasmid-pij702. Appl Environ Microbiol 52(6):1382–1385Google Scholar
  75. Murooka Y, Piao Y, Kiatpapan P, Yamashita M (2005) Production of tetrapyrrole compounds and vitamin B12 using genetically engineering of Propionibacterium freudenreichii. An overview. Le Lait 85(1–2):9–22CrossRefGoogle Scholar
  76. Piao Y, Kiatpapan P, Yamashita M, Murooka Y (2004a) Effects of expression of hemA and hemB genes on production of porphyrin in Propionibacterium freudenreichii. Appl Environ Microbiol 70(12):7561–7566CrossRefGoogle Scholar
  77. Piao Y, Yamashita M, Kawaraichi N, Asegawa R, Ono H, Murooka Y (2004b) Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J Biosci Bioeng 98(3):167–173CrossRefGoogle Scholar
  78. Quesada-Chanto A, Afschar AS, Wagner F (1994) Microbial production of propionic acid and vitamin B12 using molasses or sugar. Appl Microbiol Biotechnol 41(4):378–383Google Scholar
  79. Raux E, Lanois A, Warren MJ, Rambach A, Thermes C (1998) Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem J 335:159–166CrossRefGoogle Scholar
  80. Raux E, Schubert HL, Warren MJ (2000) Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell Mole Life Sci 57(13–14):1880–1893CrossRefGoogle Scholar
  81. Roessner CA, Scott AI (2006) Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). J Bacteriol 188(21):7331–7334CrossRefGoogle Scholar
  82. Roessner CA, Huang KX, Warren MJ, Raux E, Scott AI (2002) Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 148:1845–1853CrossRefGoogle Scholar
  83. Roth JR, Lawrence JG, Rubenfield M, Kiefferhiggins S, Church GM (1993) Characterization of the cobalamin (vitamin-B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175(11):3303–3316CrossRefGoogle Scholar
  84. Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181CrossRefGoogle Scholar
  85. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44(1–2):93–106CrossRefGoogle Scholar
  86. Schanke CA, Wackett LP (1992) Environmental reductive elimination-reactions of polychlorinated ethanes mimicked by transition-metal coenzymes. Environ Sci Technol 26(4):830–833CrossRefGoogle Scholar
  87. Schrauzer GN (1968) Organocobalt chemistry of vitamin B12 model compounds (cobaloximes). Acc Chem Res 1(4):97–103CrossRefGoogle Scholar
  88. Schrauzer GN, Deutsch E (1969) Reactions of cobalt(I) supernucleophiles. The alkylation of vitamin B12s, cobaloximes(I), and related compounds. J Am Chem Soc 91(12):3341–3350CrossRefGoogle Scholar
  89. Scott AI, Roessner CA (2002) Biosynthesis of cobalamin (vitamin B12). Biochem Soc Trans 30:613–620CrossRefGoogle Scholar
  90. Shan H, Kurtz HD, Freedman D (2010) Evaluation of strategies for anaerobic bioremediation of high concentrations of halomethanes. Water Res 44(5):1317–1328CrossRefGoogle Scholar
  91. Shan H, Wang H, Yu R, Jacob P, Freedman DL (2014) Biodegradation of high concentrations of halomethanes by a fermentative enrichment culture. Amb Express 4.
  92. Shimakoshi H, Tokunaga M, Baba T, Hisaeda Y (2004) Photochemical dechlorination of DDT catalyzed by a hydrophobic vitamin B12 and a photosensitizer under irradiation with visible light. Chem Commun (Camb) 16:1806–1807CrossRefGoogle Scholar
  93. Song H, Carraway ER (2008) Catalytic hydrodechlorination of chlorinated ethenes bly nanoscale zero-valent iron. Appl Catal B Environ 78(1–2):53–60CrossRefGoogle Scholar
  94. Sorel D, Lesage S, Brown S, Millar K (2001) Vitamin B12 and reduced titanium for remediation of residual chlorinated solvents: field experiment. Groundw Monit Remediat 21(4):140–148CrossRefGoogle Scholar
  95. Takano H, Hagiwara K, Ueda K (2015) Fundamental role of cobalamin biosynthesis in the developmental growth of Streptomyces coelicolor A3 (2). Appl Microbiol Biotechnol 99(5):2329–2337CrossRefGoogle Scholar
  96. Thirupathaiah Y, Swarupa Rani C, Sudhakara Reddy M, Venkateswar Rao L (2012) Effect of chemical and microbial vitamin B12 analogues on production of vitamin B12. World J Microbiol Biotechnol 28(5):2267–2271CrossRefGoogle Scholar
  97. Ukrainczyk L, Chibwe M, Pinnavaia TJ, Boyd SA (1995) Reductive dechlorination of carbon tetrachloride in water catalyzed by mineral-supported biomimetic cobalt macrocycles. Environ Sci Technol 29(2):439–445CrossRefGoogle Scholar
  98. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRefGoogle Scholar
  99. Wang ZJ, Wang HY, Li YL, Chu J, Huang MZ, Zhuang YP, Zhang SL (2010) Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresour Technol 101(8):2845–2852CrossRefGoogle Scholar
  100. Wang J, Fu Z, Liu G, Guo N, Lu H, Zhan Y (2013) Mediators-assisted reductive biotransformation of tetrabromobisphenol-A by Shewanella sp. XB. Bioresour Technol 142:192–197CrossRefGoogle Scholar
  101. Wang P, Jiao Y, Liu S (2014) Novel fermentation process strengthening strategy for production of propionic acid and vitamin B12 by Propionibacterium freudenreichii. J Ind Microbiol Biotechnol 41(12):1811–1815CrossRefGoogle Scholar
  102. Wang P, Wang Y, Liu Y, Shi H, Su Z (2012) Novel in situ product removal technique for simultaneous production of propionic acid and vitamin B12 by expanded bed adsorption bioreactor. Bioresour Technol 104:652–659CrossRefGoogle Scholar
  103. Warren MJ, Roessner C, Santander P, Scott A (1990) The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 265(3):725–729CrossRefGoogle Scholar
  104. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002) The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19(4):390–412CrossRefGoogle Scholar
  105. Workman DJ, Woods SL, Gorby YA, Fredrickson JK, Truex MJ (1997) Microbial reduction of vitamin B12 by Shewanella algae strain BrY with subsequent transformation of carbon tetrachloride. Environ Sci Technol 31(8):2292–2297CrossRefGoogle Scholar
  106. Xu Y, Wang C, Hou J, Wang P, You G, Miao L, Lv B, Yang Y, Zhang F (2017) Application of zero valent iron coupling with biological process for wastewater treatment: a review. Rev Environ Sci Biotechnol 16:667–693CrossRefGoogle Scholar
  107. Ye KM, Shijo M, Jin S, Shimizu K (1996) Efficient production of vitamin B12 from propionic acid bacteria under periodic variation of dissolved oxygen concentration. J Ferment Bioeng 82(5):484–491CrossRefGoogle Scholar
  108. Yu Y, Zhu X, Shen Y, Yao H, Wang P, Ye K, Wang X, Gu Q (2015) Enhancing the vitamin B12 production and growth of Propionibacterium freudenreichii in tofu wastewater via a light-induced vitamin B12 riboswitch. Appl Microbiol Biotechnol 99(24):10481–10488CrossRefGoogle Scholar
  109. Zhu X, Wang X, Zhang C, Wang X, Gu Q (2015) A riboswitch sensor to determine vitamin B12 in fermented foods. Food Chem 175:523–528CrossRefGoogle Scholar
  110. Zou SW, Stensel HD, Ferguson JF (2000) Carbon tetrachloride degradation: effect of microbial growth substrate and vitamin B12 content. Environ Sci Technol 34(9):1751–1757CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Pollution Control and Ecological SecurityShanghaiPeople’s Republic of China

Personalised recommendations