Advertisement

Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation

  • Krishna R. Reddy
  • Archana Gopakumar
  • Jyoti K. Chetri
Review Paper

Abstract

One of the major concerns faced by the iron and steel industry, other than the abundant emission of carbon dioxide into the atmosphere, is the huge quantity of slag that is generated during the manufacturing of iron and steel. A comprehensive understanding of the iron and steel slag properties has diverted them away from stockpiling or landfilling to useful engineering applications. The similarity of these slags to natural minerals used in geologic carbon dioxide sequestration has made them sustainable alternative for industrial-scale carbon capture and storage. Further, they possess properties that are conducive for remediation of soil and groundwater contaminated with heavy metals and other toxic chemicals. This paper reviews the iron and steel slag characteristics suitable for engineering applications, describes several engineering application examples, and discusses challenges and opportunities to develop practical applications using iron and steel slags. This paper also discusses the on-going research which explores the use of steel slag along with the biochar-amended soil to develop a biogeochemical landfill cover to sequester fugitive gas emissions such as CH4, CO2 and H2S from MSW landfills and attain zero-emissions landfill.

Keywords

Iron and steel slag CO2 sequestration Environmental remediation Sustainability Landfill cover Biogeochemical cover MSW Zero-emissions landfill cover 

Abbreviations

AMD

Acid mine drainage

AVS

Acid volatile sulfide

AW

Alkaline industrial wastes

BOD

Biochemical oxygen demand

BF

Blast furnace

BOF

Basic oxygen furnace

CCS

Carbon capture and storage

C&D

Construction and demolition

DM

Dredged material

EAF

Electric arc furnace

ETS

Emissions trade system

GCS

Geological carbon sequestration

GDP

Gross domestic product

GHG

Greenhouse gas

GGBS

Ground granulated blast furnace slag

IPCC

Intergovernmental panel on climate change

LD

Ladle slag

LFG

Landfill gas

L/S

Liquid to solid ratio

MSW

Municipal solid waste

SEM

Scanning electron microscopy

SPLP

Synthetic precipitation leaching procedure

SSF

Steel slag fines

SSS

Stainless steel slag

TCE

Trichloroethylene

TCLP

Toxicity characteristics leaching procedure

TGA

Thermogravimetric analysis

XEDS

X-ray energy dispersive spectrometer

XRD

X-ray diffraction

Notes

Acknowledgements

This project is funded by the U.S. National Science Foundation (Grant CMMI # 1724773), which is gratefully acknowledged. The authors thank Girish Kumar, Iziquiel Cecchin, Dennis Grubb for their guidance and assistance during this study.

References

  1. Ahmad M, Lee SS, Yang JE, Ro HM, Lee YH, Ok YS (2012) Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol Environ Saf 79:225–231CrossRefGoogle Scholar
  2. Andreas L, Herrmann I, Lidstrom-Larrsson M, Lagerkvist A (2005) Physical properties of steel slag to be reused in a landfill cover. In: Proceedings of Sardinia 10th international waste management and landfill symposium, Environmental Sanitary Engineering Centre, Cagliari, Italy, 3–7Google Scholar
  3. Andreas L, Diener S, Lagerkvist A (2014) Steel slags in a landfill top cover—experiences from a full-scale experiment. Waste Manag 34(3):692–701CrossRefGoogle Scholar
  4. Baciocchi R, Costa G, Polettini A, Pomi R (2009) Influence of particle size on the carbonation of stainless steel slag for CO2 storage. Energy Procedia 1(1):4859–4866CrossRefGoogle Scholar
  5. Baciocchi R, Costa G, Di Bartolomeo E, Polettini A, Pomi R (2011) Wet versus slurry carbonation of EAF steel slag. Greenh Gases 1(4):312–319CrossRefGoogle Scholar
  6. Baird C, Cann M (2005) Environmental chemistry (No. TD 193. B34 2005)Google Scholar
  7. Baker MJ, Blowes DW, Ptacek CJ (1998) Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ Sci Technol 32(15):2308–2316CrossRefGoogle Scholar
  8. Belhadj E, Diliberto C, Lecomte A (2012) Characterization and activation of basic oxygen furnace slag. Cem. Concr. Compos. 34(1):34–40CrossRefGoogle Scholar
  9. Boone MA, Nielsen P, De Kock T, Boone MN, Quaghebeur M, Cnudde V (2013) Monitoring of stainless-steel slag carbonation using X-ray computed microtomography. Environ Sci Technol 48(1):674–680CrossRefGoogle Scholar
  10. Bowden LI, Jarvis AP, Younger PL, Johnson KL (2009) Phosphorus removal from waste waters using basic oxygen steel slag. Environ Sci Technol 43(7):2476–2481CrossRefGoogle Scholar
  11. Capobianco O, Costa G, Thuy L, Magliocco E, Hartog N, Baciocchi R (2014) Carbonation of stainless steel slag in the context of in situ brownfield remediation. Miner Eng 59:91–100CrossRefGoogle Scholar
  12. Chang EE, Chen CH, Chen YH, Pan SY, Chiang PC (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186(1):558–564CrossRefGoogle Scholar
  13. Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227:97–106CrossRefGoogle Scholar
  14. Chesner WH, Collins RJ, MacKay MH (1998) User guidelines for waste and by-product materials in pavement construction. Federal Highway Administration (FHWA), FHWA-RD-97-148Google Scholar
  15. Chiang PC, Pan SY (2017) Carbon dioxide mineralization and utilization. Springer, SingaporeCrossRefGoogle Scholar
  16. Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57CrossRefGoogle Scholar
  17. Department of Natural Resources (1997) Effluent standards and limitations for phosphorous. Wis. Stats., NR 217.04Google Scholar
  18. Diener S, Andreas L, Herrmann I, Ecke H, Lagerkvist A (2010) Accelerated carbonation of steel slags in a landfill cover construction. Waste Manag 30(1):132–139CrossRefGoogle Scholar
  19. Freeman JS, Rowell DL (1981) The adsorption and precipitation of phosphate onto calcite. Eur J Soil Sci 32(1):75–84CrossRefGoogle Scholar
  20. Goldberg P, Chen ZY, O’Connor W, Walters R, Ziock H (2001) CO2 mineral sequestration studies in the US. National Energy Technology Laboratory (NETL), Pittsburgh, PA (United States)Google Scholar
  21. Grubb DG, Wazne M (2011) Metal immobilization using slag fines. U.S. Patent Application No. 12/874,079Google Scholar
  22. Grubb DG, Wazne M, Jagupilla SC, Malasavage NE (2011) Beneficial use of steel slag fines to immobilize arsenite and arsenate: slag characterization and metal thresholding studies. J Hazard Toxic Radioact Waste 15(3):130–150CrossRefGoogle Scholar
  23. Gupta JD, Kneller WA, Tamirisa R, Skrzypczak-Jankun E (1994) Characterization of base and subbase iron and steel slag aggregates causing deposition of calcareous tufa in drains. Transp Res Rec 1434:17–22Google Scholar
  24. Gutierrez J, Hong CO, Lee BH, Kim PJ (2010) Effect of steel-making slag as a soil amendment on arsenic uptake by radish (Raphanus sativa L.) in an upland soil. Biol Fertil Soils 46(6):617–623CrossRefGoogle Scholar
  25. Hamilton J, Gue J, Socotch C (2007) The use of steel slag in passive treatment design for AMD discharge in the Huff Run watershed restoration. In: Proceedings of American Society of Mining and Reclamation, Gillette, WY, pp 272–282Google Scholar
  26. Herrmann I, Andreas L, Diener S, Lind L (2010) Steel slag used in landfill cover liners: laboratory and field tests. Waste Manag Res 28(12):1114–1121CrossRefGoogle Scholar
  27. Huijgen WJJ, Comans RNJ (2005) Mineral CO2 sequestration by carbonation of industrial residues. ECN, ECN-C–05-074, 22Google Scholar
  28. Huijgen WJ, Comans RN (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40(8):2790–2796CrossRefGoogle Scholar
  29. Huijgen WJ, Witkamp GJ, Comans RN (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682CrossRefGoogle Scholar
  30. IEA (2016) 20 years of carbon capture and storage: accelerating future deployment. International Energy Agency, France. https://www.iea.org/publications/freepublications/publication/20YearsofCarbonCaptureandStorage_WEB.pdf. Accessed on 4 Jan 2019
  31. Kasina M, Kowalski PR, Michalik M (2015) Mineral carbonation of metallurgical slags. Mineralogia 45(1–2):27–45CrossRefGoogle Scholar
  32. Kim K, Asaoka S, Yamamoto T, Hayakawa S, Takeda K, Katayama M, Onoue T (2012) Mechanisms of hydrogen sulfide removal with steel making slag. Environ Sci Technol 46(18):10169–10174Google Scholar
  33. Kimio ITO (2015) Steelmaking slag for fertilizer usage. Nippon Steel Sumitomo Metal Technical Report, no. 109, pp 130–136Google Scholar
  34. Kunzler C, Alves N, Pereira E, Nienczewski J, Ligabue R, Einloft S, Dullius J (2011) CO2 storage with indirect carbonation using industrial waste. Energy Procedia 4:1010–1017CrossRefGoogle Scholar
  35. Lackner KS, Wendt CH, Butt DP, Joyce EL Jr, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170CrossRefGoogle Scholar
  36. Lee IS, Kim OK, Chang YY, Bae B, Kim HH, Baek KH (2002) Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. J Biosci Bioeng 94(5):406–411CrossRefGoogle Scholar
  37. Leite CMDC, Cardoso LP, Mello JWVD (2013) Use of steel slag to neutralize acid mine drainage (AMD) in sulfidic material from a uranium mine. Rev Bras Ciênc Solo 37(3):804–811CrossRefGoogle Scholar
  38. Lekakh SN, Rawlins CH, Robertson DGC, Richards VL, Peaslee KD (2008) Kinetics of aqueous leaching and carbonization of steelmaking slag. Metall Mater Trans B 39(1):125–134CrossRefGoogle Scholar
  39. Leung DY, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443CrossRefGoogle Scholar
  40. Lu SG, Bai SQ, Shan HD (2008) Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag. J Zhejiang Univ Sci A 9(1):125–132CrossRefGoogle Scholar
  41. Metz B, Davidson O, Coninck H, Loos M, Meyer L (2005) Special report on carbon dioxide capture and storage. Intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  42. Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137(2):762–811CrossRefGoogle Scholar
  43. Montes-Morán MA, Concheso A, Canals-Batlle C, Aguirre NV, Ania CO, Martín MJ, Masaguer V (2012) Linz–Donawitz steel slag for the removal of hydrogen sulfide at room temperature. Environ Sci Technol 46(16):8992–8997CrossRefGoogle Scholar
  44. Moon DH, Wazne M, Cheong KH, Chang YY, Baek K, Ok YS, Park JH (2015) Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environ Sci Pollut Res 22(14):11162–11169CrossRefGoogle Scholar
  45. Ko MS, Chen YL, Jiang JH (2015) Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties. Constr Build Mater 98:286–293CrossRefGoogle Scholar
  46. Murphy JN, Meadowcroft TR, Barr PV (1997) Enhancement of the cementitious properties of steelmaking slag. Can Metall Q 36(5):315–331CrossRefGoogle Scholar
  47. National Slag Association (2013) Utilizing iron and steel slag’s in environmental applications-an overview. http://www.nationalslag.org/utilizing-iron-and-steel-slag’s-environmental-applications-overview. Accessed 4 Jan 2019
  48. Ng CWW, Ng M, Leung AK (2017) Removal of hydrogen sulfide using soil amended with ground granulated blast-furnace slag. J Environ Eng 143(7):04017016CrossRefGoogle Scholar
  49. Ning D, Liang Y, Liu Z, Xiao J, Duan A (2016) Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS ONE 11(12):e0168163CrossRefGoogle Scholar
  50. NOAA (2018) National Oceanic and Atmospheric Administration, Earth System Laboratory, Global Monitoring Division. https://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed on 9 Aug 2019
  51. Ochola CE, Moo-Young HK (2004) Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag). Environ Sci Technol 38(22):6161–6165CrossRefGoogle Scholar
  52. Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4(5):333–337CrossRefGoogle Scholar
  53. Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Technol 109:364–392Google Scholar
  54. OSHA (2019) Occupational Safety and Health Administration: Safety and health topics-Hydrogen Sulfide. US Department of Labor. https://www.osha.gov/SLTC/hydrogensulfide/hydrogensulfide_found.html. Accessed on 4 June 2018
  55. Pan SY, Adhikari R, Chen YH, Li P, Chiang PC (2016) Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J Clean Prod 137:617–631CrossRefGoogle Scholar
  56. Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140(9):04014047CrossRefGoogle Scholar
  57. Reddy KR, Kumar G, Grubb D (2018a) Innovative biogeochemical soil cover to mitigate landfill gas emissions. In: Protection and restoration of the environment XIV (PREXIV), Greece, 3–6 July 2018Google Scholar
  58. Reddy KR, Kumar G, Gopakumar A, Grubb D (2018b) CO2 sequestration using BOF slag: application in landfill cover. In: Protection and restoration of the environment XIV (PREXIV), Greece, 3–6 July 2018Google Scholar
  59. Russell HH, Matthews JE, Guy WS (1992) TCE removal from contaminated soil and groundwater. In: Russell Boulding J (ed) EPA environmental engineering sourcebook. CRC Press, Boca RatonGoogle Scholar
  60. Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Biotechnol 13(1):79–107CrossRefGoogle Scholar
  61. Sarperi L, Surbrenat A, Kerihuel A, Chazarenc F (2014) The use of an industrial by-product as a sorbent to remove CO2 and H2S from biogas. J Environ Chem Eng 2(2):1207–1213CrossRefGoogle Scholar
  62. Scott RI (2001) Lead contamination in soil at outdoor firing ranges. https://www.princeton.edu/~rmizzo/firingrange.htm. Accessed on 4 June 2018
  63. Sheridan C (2014) Remediation of acid mine drainage using metallurgical slags. Miner Eng 64:15–22CrossRefGoogle Scholar
  64. Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng 16(3):230–236CrossRefGoogle Scholar
  65. Smith JS (2003) Method for purifying contaminated groundwater using steel slag. U.S. Patent No. 6,602,421Google Scholar
  66. Smyth DJA, Blowes DW, Ptacek CJ, Groza LE, Baker MJ, Crawford W (2004) Phosphorus and pathogen removal from wastewater, storm water and groundwater using permeable reactive materials. Canadian water network meeting, Ottawa, ONGoogle Scholar
  67. Solomon S, Carpenter M, Flach TA (2008) Intermediate storage of carbon dioxide in geological formations: a technical perspective. Int J Greenh Gas Control 2(4):502–510CrossRefGoogle Scholar
  68. Srivastava SK, Gupta VK, Mohan D (1997) Removal of lead and chromium by activated slag—a blast-furnace waste. J Environ Eng 123(5):461–468CrossRefGoogle Scholar
  69. Stolaroff JK, Lowry GV, Keith DW (2005) Using CaO-and MgO-rich industrial waste streams for carbon sequestration. Energy Convers Manag 46(5):687–699CrossRefGoogle Scholar
  70. Su TH, Yang HJ, Shau YH, Takazawa E, Lee YC (2016) CO2 sequestration utilizing basic-oxygen furnace slag: controlling factors, reaction mechanisms and V–Cr concerns. J Environ Sci 41:99–111CrossRefGoogle Scholar
  71. Takahashi T, Yabuta K (2002) New application of iron and steelmaking slag. NKK Technical Report-Japanese Edition, pp 43–48Google Scholar
  72. Tsai TT, Kao CM, Wang JY (2011) Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation. Chemosphere 83(5):687–692CrossRefGoogle Scholar
  73. Tu M, Zhao H, Lei Z, Wang L, Chen D, Yu H, Qi T (2015) Aqueous carbonation of steel slag: a kinetics study. ISIJ Int 55(11):2509–2514CrossRefGoogle Scholar
  74. Ukwattage NL, Ranjith PG, Li X (2017) Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97:15–22CrossRefGoogle Scholar
  75. US EPA (2017) Carbon dioxide capture and sequestration: storage safety and security. https://19january2017snapshot.epa.gov/climatechange/carbon-dioxide-capture-and-sequestration-storage-safety-and-security_.html. Accessed on 4 June 2018
  76. US EPA, Underground Injection Control (UIC) (2016) Class VI—wells used for geologic sequestration of CO2. https://www.epa.gov/uic/class-vi-wells-used-geologic-sequestration-co2. Accessed on 4 June 2018
  77. U.S. Geological Survey (USGS) (2018) Mineral Commodity Summaries. Iron and steel slag. https://minerals.usgs.gov/minerals/pubs/commodity/iron_and_steel_slag/. Accessed on 4 June 2018
  78. van Zomeren A, Van der Laan SR, Kobesen HB, Huijgen WJ, Comans RN (2011) Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag 31(11):2236–2244CrossRefGoogle Scholar
  79. Wang X, Cai Q-S (2006) Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere 16(4):519–524CrossRefGoogle Scholar
  80. Wu HZ, Chang J, Wang H (2011) Pore structural changes and carbonated depth of carbonated steel slag. Adv Mater Res 306:1122–1125CrossRefGoogle Scholar
  81. Xiong J, He Z, Mahmood Q, Liu D, Yang X, Islam E (2008) Phosphate removal from solution using steel slag through magnetic separation. J Hazard Mater 152(1):211–215CrossRefGoogle Scholar
  82. Yargicoglu EN, Reddy KR (2017) Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: a laboratory column study. J Environ Manag 193:19–31CrossRefGoogle Scholar
  83. Yargicoglu EN, Reddy KR (2018) Biochar-amended soil cover for microbial methane oxidation: effect of biochar amendment ratio and cover profile. J Geotech Geoenviron Eng 144(3):04017123CrossRefGoogle Scholar
  84. Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng.  https://doi.org/10.1155/2011/463638 Google Scholar
  85. Yilmaz D, Lassabatere L, Deneele D, Angulo-Jaramillo R, Legret M (2013) Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J.  https://doi.org/10.2136/vzj2012.0121 Google Scholar
  86. Yu J, Wang K (2011) Study on characteristics of steel slag for CO2 capture. Energy Fuels 25(11):5483–5492CrossRefGoogle Scholar
  87. Zhang YL, Liu MD, Wang YJ, Du LD (2003) Effects of slag application on Si, Fe and Mn in paddy soil and rice plant. Chin J Soil Sci 4:016Google Scholar
  88. Zhang T, Yu Q, Wei J, Li J, Zhang P (2011) Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl 56(1):48–55CrossRefGoogle Scholar
  89. Ziemkiewicz P, Skousen J (1999) Steel slag in acid mine drainage treatment and control. In: Proceedings of annual national meeting of the society for surface mining and reclamation, vol 16, pp 651–656Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil and Materials EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations